1
|
Xiong W, Shi F, Cheng R, Zhu B, Wang L, Chen P, Lou H, Wu W, Qi C, Lei M, Jiang H. Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixiang Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
García-López D, Pavlovic L, Hopmann KH. To Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metals. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Diego García-López
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ljiljana Pavlovic
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
3
|
Han YL, Zhao BY, Jiang KY, Yan HM, Zhang ZX, Yang WJ, Guo Z, Li YR. Mechanistic Insights into the Ni-Catalyzed Reductive Carboxylation of C-O Bonds in Aromatic Esters with CO 2 : Understanding Remarkable Ligand and Traceless-Directing-Group Effects. Chem Asian J 2018; 13:1570-1581. [PMID: 29774983 DOI: 10.1002/asia.201800257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Indexed: 12/20/2022]
Abstract
The mechanism of the Ni0 -catalyzed reductive carboxylation reaction of C(sp2 )-O and C(sp3 )-O bonds in aromatic esters with CO2 to access valuable carboxylic acids was comprehensively studied by using DFT calculations. Computational results revealed that this transformation was composed of several key steps: C-O bond cleavage, reductive elimination, and/or CO2 insertion. Of these steps, C-O bond cleavage was found to be rate-determining, and it occurred through either oxidative addition to form a NiII intermediate, or a radical pathway that involved a bimetallic species to generate two NiI species through homolytic dissociation of the C-O bond. DFT calculations revealed that the oxidative addition step was preferred in the reductive carboxylation reactions of C(sp2 )-O and C(sp3 )-O bonds in substrates with extended π systems. In contrast, oxidative addition was highly disfavored when traceless directing groups were involved in the reductive coupling of substrates without extended π systems. In such cases, the presence of traceless directing groups allowed for docking of a second Ni0 catalyst, and the reactions proceed through a bimetallic radical pathway, rather than through concerted oxidative addition, to afford two NiI species both kinetically and thermodynamically. These theoretical mechanistic insights into the reductive carboxylation reactions of C-O bonds were also employed to investigate several experimentally observed phenomena, including ligand-dependent reactivity and site-selectivity.
Collapse
Affiliation(s)
- Yan-Li Han
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Wen-Jing Yang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Yan-Rong Li
- Department of Earth Sciences and Engineering, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| |
Collapse
|
5
|
Pavlovic L, Vaitla J, Bayer A, Hopmann KH. Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ljiljana Pavlovic
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Janakiram Vaitla
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
6
|
Pinaka A, Vougioukalakis GC. Using sustainable metals to carry out “green” transformations: Fe- and Cu-catalyzed CO2 monetization. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tsipis AC. DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds. RSC Adv 2014. [DOI: 10.1039/c4ra04921g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Highlighting the recent progress in DFT/TDDFT application to coordination chemistry of copper.
Collapse
Affiliation(s)
- Athanassios C. Tsipis
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- 451 10 Ioannina
- Greece
| |
Collapse
|