1
|
Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Masuda Y, Yagami Y, Nakazawa K, Hirotsu M. Iron Carbonyl Complexes Containing N,C,S-Tridentate Ligands with Quinoline, Vinyl, and Benzenethiolate Units. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Masuda
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Yuki Yagami
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Kotomi Nakazawa
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Masakazu Hirotsu
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
3
|
Nakae T, Hirotsu M, Nakajima H. CO Release from N,C,S-Pincer Iron(III) Carbonyl Complexes Induced by Visible-to-NIR Light Irradiation: Mechanistic Insight into Effects of Axial Phosphorus Ligands. Inorg Chem 2018; 57:8615-8626. [DOI: 10.1021/acs.inorgchem.8b01407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Toyotaka Nakae
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Masakazu Hirotsu
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558−8585, Japan
| |
Collapse
|
4
|
Gao C, Liang X, Guo Z, Jiang BP, Liu X, Shen XC. Diiron Hexacarbonyl Complex Induces Site-Specific Release of Carbon Monoxide in Cancer Cells Triggered by Endogenous Glutathione. ACS OMEGA 2018; 3:2683-2689. [PMID: 30023846 PMCID: PMC6044757 DOI: 10.1021/acsomega.8b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, we have evaluated a water-soluble, nontarget reagent and a carrier-free diiron hexacarbonyl complex, [Fe2{μ-SCH2CH(OH)CH2(OH)}2(CO)6] (TG-FeCORM), that can induce the site-specific release of carbon monoxide (CO) in cancer cells triggered by endogenous glutathione (GSH). The releasing rate of CO was dependent on the amount of endogenous GSH. Being the amount of endogenous GSH higher in cancer cells than in normal cells, the CO-releasing rate resulted faster in cancer cells. Moreover, the anti-inflammatory properties related to the intracellular CO release of TG-FeCORM were also confirmed in the living HeLa cells.
Collapse
Affiliation(s)
- Cunji Gao
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaohua Liang
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhengxi Guo
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Bang-Ping Jiang
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaoming Liu
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xing-Can Shen
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
5
|
Zell T, Langer R. From Ruthenium to Iron and Manganese-A Mechanistic View on Challenges and Design Principles of Base-Metal Hydrogenation Catalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701722] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Zell
- ADAMA Makhteshim Ltd.; PO Box 60, Industrial Zone Beer Sheva 8410001 Israel
| | - Robert Langer
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 4 35032 Marburg Germany
| |
Collapse
|
6
|
Carlson MR, Gilbert-Wilson R, Gray DR, Mitra J, Rauchfuss TB, Richers CP. Diiron Dithiolate Hydrides Complemented with Proton-Responsive Phosphine-Amine Ligands. Eur J Inorg Chem 2017; 2017:3169-3173. [PMID: 28808414 DOI: 10.1002/ejic.201700474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reaction of Fe2(pdt)(CO)6 with two equivalents of Ph2PC6H4NH2 (PNH2) affords the amido hydride HFe2(pdt)(CO)2(PNH2)(PNH) {[H1H]0, pdt2- = CH2(CH2S-)2}. Isolated intermediates in this conversion include Fe2(pdt)(CO)5-(κ1-PNH2) and Fe2(pdt)(CO)4(κ2-PNH2). X-ray crystallographic analysis of [H1H]0 shows that the chelating amino/amido-phosphine ligands occupy trans-dibasal positions. The 31P NMR spectrum indicates that [H1H]0 undergoes rapid proton exchange between the amido and amine centers. No exchange was observed for the hydride. Protonation of [H1H]0 gives [HFe2(pdt)(CO)2(PNH2)2]+ ([H21H]+), which contains two equivalent amino-phosphine ligands. Single-crystal X-ray crystallographic analysis of [H21H]+ also reveals hydrogen bonds between the exo amine protons with a THF molecule and BF4. Deprotonation of [H1H]0 with potassium tert-butoxide gave [HFe2(pdt)(CO)2(PNH)2]- ([1H]-), which was characterized spectroscopically. The complex has time-averaged C2 symmetry with two amido-phosphine ligands. FTIR spectroscopic measurements show that υCO shifts by approximately 20 cm-1 in the series [1H]-, [H1H]0, and [H21H]+. These shifts are comparable to those seen for the S-protonation of the (NC)2(CO)Fe-(μ-Scys)2Ni(Scys)2 site in the [NiFe]-hydrogenases.[1].
Collapse
Affiliation(s)
- Michaela R Carlson
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Gilbert-Wilson
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle R Gray
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joyee Mitra
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Silva F, Fernandes C, Campello MPC, Paulo A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Mede R, Klein M, Claus RA, Krieck S, Quickert S, Görls H, Neugebauer U, Schmitt M, Gessner G, Heinemann SH, Popp J, Bauer M, Westerhausen M. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere. Inorg Chem 2015; 55:104-13. [PMID: 26672620 DOI: 10.1021/acs.inorgchem.5b01904] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified.
Collapse
Affiliation(s)
- Ralf Mede
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena , Humboldtstraße, 8, D-07743 Jena, Germany
| | - Moritz Klein
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Ralf A Claus
- Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena and Jena University Hospital , Erlanger Allee 101, D-07747 Jena, Germany
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena , Humboldtstraße, 8, D-07743 Jena, Germany
| | - Stefanie Quickert
- Center for Molecular Biomedicine (CMB), Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital , Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena , Humboldtstraße, 8, D-07743 Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, D-07745 Jena, Germany.,Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena and Jena University Hospital , Erlanger Allee 101, D-07747 Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, D-07743 Jena, Germany
| | - Guido Gessner
- Center for Molecular Biomedicine (CMB), Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital , Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine (CMB), Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital , Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Straße 9, D-07745 Jena, Germany.,Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena and Jena University Hospital , Erlanger Allee 101, D-07747 Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena , Helmholtzweg 4, D-07743 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena and Jena University Hospital , Erlanger Allee 101, D-07747 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena , Humboldtstraße, 8, D-07743 Jena, Germany
| |
Collapse
|
9
|
Mede R, Lorett-Velásquez VP, Klein M, Görls H, Schmitt M, Gessner G, Heinemann SH, Popp J, Westerhausen M. Carbon monoxide release properties and molecular structures of phenylthiolatomanganese(i) carbonyl complexes of the type [(OC)4Mn(μ-S-aryl)]2. Dalton Trans 2015; 44:3020-33. [DOI: 10.1039/c4dt03567d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arylthiolatomanganese(i) tetracarbonyls form dimers or trimers and show a two-step CO release, triggered by ligand exchange and irradiation.
Collapse
Affiliation(s)
- Ralf Mede
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
| | | | - Moritz Klein
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Institute of Photonic Technology (IPHT)
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
| | - Michael Schmitt
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Institute of Photonic Technology (IPHT)
| | - Guido Gessner
- Center for Molecular Biomedicine (CMB)
- Department of Biophysics
- Friedrich Schiller University Jena and Jena University Hospital
- D-07745 Jena
- Germany
| | - Stefan H. Heinemann
- Center for Molecular Biomedicine (CMB)
- Department of Biophysics
- Friedrich Schiller University Jena and Jena University Hospital
- D-07745 Jena
- Germany
| | - Jürgen Popp
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Institute of Photonic Technology (IPHT)
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
| |
Collapse
|
10
|
Heinemann SH, Hoshi T, Westerhausen M, Schiller A. Carbon monoxide--physiology, detection and controlled release. Chem Commun (Camb) 2014; 50:3644-60. [PMID: 24556640 PMCID: PMC4072318 DOI: 10.1039/c3cc49196j] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) is increasingly recognized as a cell-signalling molecule akin to nitric oxide (NO). CO has attracted particular attention as a potential therapeutic agent because of its reported anti-hypertensive, anti-inflammatory and cell-protective effects. We discuss recent progress in identifying new effector systems and elucidating the mechanisms of action of CO on, e.g., ion channels, as well as the design of novel methods to monitor CO in cellular environments. We also report on recent developments in the area of CO-releasing molecules (CORMs) and materials for controlled CO application. Novel triggers for CO release, metal carbonyls and degradation mechanisms of CORMs are highlighted. In addition, potential formulations of CORMs for targeted CO release are discussed.
Collapse
Affiliation(s)
- Stefan H. Heinemann
- Center for Molecular Biomedicine (CMB), Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, 415 Curie Boulevard, 605 CRB, Philadelphia, PA 19104-6085, USA
| | - Matthias Westerhausen
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| |
Collapse
|
11
|
Jiang X, Long L, Wang H, Chen L, Liu X. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage. Dalton Trans 2014; 43:9968-75. [DOI: 10.1039/c3dt53620c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substitution-initiated CO-releasing rate of diiron hexacarbonyl complexes are highly dependent on their bridging linkages and the complexes of the “open” form release CO much faster than those of the “close” form.
Collapse
Affiliation(s)
- Xiujuan Jiang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001, China
| | - Li Long
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001, China
| | - Hailong Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001, China
| | - Limei Chen
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Jiangxi 341000, China
| | - Xiaoming Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001, China
- School of Metallurgy and Chemical Engineering
| |
Collapse
|