1
|
Zhou X, Wang J, Ma D, Shen Y, Zhao Y, Wu J. Electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones through dearomative spirocyclization. Chem Commun (Camb) 2024; 60:7351-7354. [PMID: 38916454 DOI: 10.1039/d4cc02638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cp2Fe-mediated electrochemical synthesis of a diverse array of phosphorylated azaspiro[4.5]di/trienones has been developed, which demonstrated broad substrate scope and good diastereoselectivity. It represents the first example of electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones, circumventing the need for external oxidants and high temperatures. Moreover, a plausible mechanism including radical-initiated dearomative cyclization driven by ferrocenium cations has been provided, which was supported by the related mechanistic study.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dumei Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, Fujian, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
2
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
3
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Budnikova YH, Dolengovsky EL, Tarasov MV, Gryaznova TV. Recent advances in electrochemical C-H phosphorylation. Front Chem 2022; 10:1054116. [PMID: 36405320 PMCID: PMC9671283 DOI: 10.3389/fchem.2022.1054116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The activation of C-H bond, and its direct one-step functionalization, is one of the key synthetic methodologies that provides direct access to a variety of practically significant compounds. Particular attention is focused on modifications obtained at the final stages of the synthesis of complicated molecules, which requires high tolerance to the presence of existing functional groups. Phosphorus is an indispensable element of life, and phosphorus chemistry is now experiencing a renaissance due to new emerging applications in medicinal chemistry, materials chemistry (polymers, flame retardants, organic electronics, and photonics), agricultural chemistry (herbicides, insecticides), catalysis (ligands) and other important areas of science and technology. In this regard, the search for new, more selective, low-waste synthetic routes become relevant. In this context, electrosynthesis has proven to be an eco-efficient and convenient approach in many respects, where the reagents are replaced by electrodes, where the reactants are replaced by electrodes, and the applied potential the applied potential determines their "oxidizing or reducing ability". An electrochemical approach to such processes is being developed rapidly and demonstrates some advantages over traditional classical methods of C-H phosphorylation. The main reasons for success are the exclusion of excess reagents from the reaction system: such as oxidants, reducing agents, and sometimes metal and/or other improvers, which challenge isolation, increase the wastes and reduce the yield due to frequent incompatibility with these functional groups. Ideal conditions include electron as a reactant (regulated by applied potential) and the by-products as hydrogen or hydrocarbon. The review summarizes and analyzes the achievements of electrochemical methods for the preparation of various phosphorus derivatives with carbon-phosphorus bonds, and collects data on the redox properties of the most commonly used phosphorus precursors. Electrochemically induced reactions both with and without catalyst metals, where competitive oxidation of precursors leads to either the activation of C-H bond or to the generation of phosphorus-centered radicals (radical cations) or metal high oxidation states will be examined. The review focuses on publications from the past 5 years.
Collapse
Affiliation(s)
- Yulia H. Budnikova
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
- Organic Chemistry Department, Kazan National Research Technological University, Kazan, Russia
| | - Egor L. Dolengovsky
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
- Organic Chemistry Department, Kazan National Research Technological University, Kazan, Russia
| | - Maxim V. Tarasov
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
| | - Tatyana V. Gryaznova
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
| |
Collapse
|
5
|
Gryaznova TV, Nikanshina EO, Fayzullin RR, Islamov DR, Tarasov MV, Kholin KV, Budnikova YH. EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
8
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
Shchepochkin AV, Antipin FV, Charushin VN, Chupakhin ON. Oxidative C–H Functionalization of Arenes: Main Tool of 21st Century Green Chemistry. A Review. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821070016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gafurov ZN, Kantyukov AO, Kagilev AA, Sinyashin OG, Yakhvarov DG. Electrochemical methods for synthesis and in situ generation of organometallic compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 485] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Zeng Z, Goebel JF, Liu X, Gooßen LJ. 2,2′-Biaryldicarboxylate Synthesis via Electrocatalytic Dehydrogenative C–H/C–H Coupling of Benzoic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas F. Goebel
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Xianming Liu
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Lukas J. Gooßen
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
15
|
|
16
|
Budnikova YH. Electrochemical Insight into Mechanisms and Metallocyclic Intermediates of C-H Functionalization. CHEM REC 2021; 21:2148-2163. [PMID: 33629800 DOI: 10.1002/tcr.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Transition metal-catalyzed C-H activation has emerged as a powerful tool in organic synthesis and electrosynthesis as well as in the development of new methodologies for producing fine chemicals. In order to achieve efficient and selective C-H functionalization, different strategies have been used to accelerate the C-H activation step, including the incorporation of directing groups in the substrate that facilitate coordination to the catalyst. In this review, we try to underscore that the understanding the mechanisms of the catalytic cycle and the reactivity or redox activity of the key metal cyclic intermediates in these reactions is the basis for controlling the selectivity of synthesis and electrosynthesis. Combination of the electrosynthesis and voltammetry with traditional synthetic and physico-chemical methods allows one to achieve selective transformation of C-H bonds to functionalized C-C or C-X (X=heteroatom or halogen) bonds which may encourage organic chemists to use it in the future more often. The possibilities and the benefits of electrochemical techniques are analyzed and summarized.
Collapse
Affiliation(s)
- Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088, Kazan, Russia.,Kazan National Research Technological University, Karl Marx street, 68, 420015, Kazan, Russia
| |
Collapse
|
17
|
Erchinger JE, Gemmeren M. Electrochemical Methods for Pd‐catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Johannes E. Erchinger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
18
|
Electrochemical Phosphorylation of Organic Molecules. CHEM REC 2020; 20:1530-1552. [DOI: 10.1002/tcr.202000096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
|
19
|
Gryaznova TV, Khrizanforov MN, Levitskaya AI, Kh.Rizvanov I, Balakina MY, Ivshin KA, Kataeva ON, Budnikova YH. Electrochemically Driven and Acid-Driven Pyridine-Directed ortho-Phosphorylation of C(sp2)–H Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tatyana V. Gryaznova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Alina I. Levitskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Ildar Kh.Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Marina Yu. Balakina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Kamil A. Ivshin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Olga N. Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov-str., 8, Kazan 420088, Russian Federation
| |
Collapse
|
20
|
Gao P, Weng X, Wang Z, Zheng C, Sun B, Chen Z, You S, Mei T. Cu
II
/TEMPO‐Catalyzed Enantioselective C(sp
3
)–H Alkynylation of Tertiary Cyclic Amines through Shono‐Type Oxidation. Angew Chem Int Ed Engl 2020; 59:15254-15259. [DOI: 10.1002/anie.202005099] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Pei‐Sen Gao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Xin‐Jun Weng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhen‐Hua Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhi‐Hao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
21
|
Gao P, Weng X, Wang Z, Zheng C, Sun B, Chen Z, You S, Mei T. Cu
II
/TEMPO‐Catalyzed Enantioselective C(sp
3
)–H Alkynylation of Tertiary Cyclic Amines through Shono‐Type Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei‐Sen Gao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Xin‐Jun Weng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhen‐Hua Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhi‐Hao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
22
|
Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun PH, Ruan Z. Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Org Lett 2020; 22:4016-4020. [DOI: 10.1021/acs.orglett.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yucheng Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shaogao Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Ping-Hua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
23
|
Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. Acc Chem Res 2020; 53:300-310. [PMID: 31939278 DOI: 10.1021/acs.accounts.9b00603] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical synthesis of organic compounds has emerged as an attractive and environmentally benign alternative to conventional approaches for oxidation and reduction of organic compounds that utilizes electric current instead of chemical oxidants and reductants. As such, many useful transformations have been developed, including the Kolbe reaction, the Simons fluorination process, the Monsanto adiponitrile process, and the Shono oxidation, to name a few. Electrochemical C-H functionalization represents one of the most promising reaction types among many electrochemical transformations, since this process avoids prefunctionalization of substrates and provides novel retrosynthetic disconnections. However, site-selective anodic oxidation of C-H bonds is still a fundamental challenge due to the high oxidation potentials of C-H bonds compared to organic solvents and common functional groups. To overcome this issue, indirect electrolysis via the action of a mediator (a redox catalyst) is regularly employed, by which the selectivity can be controlled following reaction of said mediator with the substrate. Since the redox potentials of transition metal complexes can be easily tuned by modification of the ligand, the synergistic use of electrochemistry and transition metal catalysis to achieve site-selective C-H functionalization is an attractive strategy. In this Account, we summarize and contextualize our recent efforts toward transition metal-catalyzed electrochemical C-H functionalization proximal to a suitable directing group. We have developed C-H oxygenation, acylation, alkylation, and halogenation reactions in which a Pd(II) species is oxidized to a Pd(III) or Pd(IV) intermediate by anodic oxidation, followed by reductive elimination to form the corresponding C-O, C-C, and C-X bonds. Importantly, improved monofunctionalization selectivity is achieved in the Pd-catalyzed C(sp3)-H oxygenation compared to conventional approaches using PhI(OAc)2 as the chemical oxidant. Physical separators are sometimes used to prevent the electrochemical deposition of Pd black on the cathode resulting from reduction of high valent Pd species. We skirted this issue through the development a Cu-catalyzed electrochemical C(sp2)-H amination using n-Bu4NI as a redox cocatalyst in an undivided cell. In addition, we developed Ir-catalyzed electrochemical vinylic C-H functionalization of acrylic acids with alkynes in an undivided cell, affording various substituted α-pyrones in good to excellent yield. More importantly, chemical oxidants, including Ag2CO3, Cu(OAc)2, and PhI(OAc)2, resulted in much lower yields in the absence of electrical current under otherwise identical conditions. As elaborated below, progress in the area of electrochemical transition metal-catalyzed synthesis provides an effective platform for environmentally friendly and sustainable selective chemical transformations.
Collapse
Affiliation(s)
- Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
24
|
Wu Z, Su F, Lin W, Song J, Wen T, Zhang H, Xu H. Scalable Rhodium(III)‐Catalyzed Aryl C−H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zheng‐Jian Wu
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- State Key Laboratory of Physical Chemistry of Solid SurfacesLaboratory of Chemical Biology of Fujian Province,iChEMXiamen University Xiamen 361005 P. R. China
| | - Feng Su
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Weidong Lin
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| | - Ting‐Bin Wen
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hui‐Jun Zhang
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- State Key Laboratory of Physical Chemistry of Solid SurfacesLaboratory of Chemical Biology of Fujian Province,iChEMXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
25
|
Wu ZJ, Su F, Lin W, Song J, Wen TB, Zhang HJ, Xu HC. Scalable Rhodium(III)-Catalyzed Aryl C-H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angew Chem Int Ed Engl 2019; 58:16770-16774. [PMID: 31464027 DOI: 10.1002/anie.201909951] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 01/22/2023]
Abstract
Transition metal catalyzed C-H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochemically driven RhIII -catalyzed aryl C-H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C-H and P-H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C-H phosphorylation reactions. Experimental results suggest that the mechanism responsible for the C-P bond formation involves an oxidation-induced reductive elimination process.
Collapse
Affiliation(s)
- Zheng-Jian Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of Chemical Biology of Fujian Province,iChEM, Xiamen University, Xiamen, 361005, P. R. China
| | - Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Weidong Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ting-Bin Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of Chemical Biology of Fujian Province,iChEM, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
26
|
Gryaznova TV, Kholin KV, Nikanshina EO, Khrizanforova VV, Strekalova SO, Fayzullin RR, Budnikova YH. Copper or Silver-Mediated Oxidative C(sp2)–H/N–H Cross-Coupling of Phthalimide and Heterocyclic Arenes: Access to N-Arylphthalimides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tatyana V. Gryaznova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Elizaveta O. Nikanshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Vera V. Khrizanforova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Sofia O. Strekalova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| |
Collapse
|
27
|
Dwivedi V, Kalsi D, Sundararaju B. Electrochemical‐/Photoredox Aspects of Transition Metal‐Catalyzed Directed C−H Bond Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikas Dwivedi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Deepti Kalsi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Basker Sundararaju
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| |
Collapse
|
28
|
Wan C, Song RJ, Li JH. Electrooxidative 1,2-Bromoesterification of Alkenes with Acids and N-Bromosuccinimide. Org Lett 2019; 21:2800-2803. [DOI: 10.1021/acs.orglett.9b00771] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Yuan Y, Qiao J, Cao Y, Tang J, Wang M, Ke G, Lu Y, Liu X, Lei A. Exogenous-oxidant-free electrochemical oxidative C-H phosphonylation with hydrogen evolution. Chem Commun (Camb) 2019; 55:4230-4233. [PMID: 30899925 DOI: 10.1039/c9cc00975b] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We herein report a versatile and environmentally friendly electrochemical oxidative C-H phosphonylation protocol. This protocol features a broad substrate scope; not only C(sp2)-H phosphonylation, but also C(sp3)-H phosphonylation is tolerated well under exogenous-oxidant-free and metal catalyst-free electrochemical oxidation conditions.
Collapse
Affiliation(s)
- Yong Yuan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang QL, Wang XY, Wang TL, Yang X, Liu D, Tong X, Wu XY, Mei TS. Palladium-Catalyzed Electrochemical C–H Bromination Using NH4Br as the Brominating Reagent. Org Lett 2019; 21:2645-2649. [DOI: 10.1021/acs.orglett.9b00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qi-Liang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Tong-Lin Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiaofeng Tong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
31
|
Kim J, Shin K, Jin S, Kim D, Chang S. Oxidatively Induced Reductive Elimination: Exploring the Scope and Catalyst Systems with Ir, Rh, and Ru Complexes. J Am Chem Soc 2019; 141:4137-4146. [DOI: 10.1021/jacs.9b00364] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Kwangmin Shin
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
32
|
Affiliation(s)
- E. O. Yurko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS ,
8, Arbuzov str.
, Kazan , Russian Federation
| | - T. V. Gryaznova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS ,
8, Arbuzov str.
, Kazan , Russian Federation
| | - Y. H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS ,
8, Arbuzov str.
, Kazan , Russian Federation
| |
Collapse
|
33
|
Chen J, Lv S, Tian S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. CHEMSUSCHEM 2019; 12:115-132. [PMID: 30280508 DOI: 10.1002/cssc.201801946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal-catalyzed C-H activation has attracted much attention from the organic synthetic community because it obviates the need to prefunctionalize substrates. However, superstoichiometric chemical oxidants, such as copper- or silver-based metal oxidants, benzoquinones, organic peroxides, K2 S2 O8 , hypervalent iodine, and O2 , are required for most of the reactions. Thus, the development of environmentally benign and user-friendly C-H bond activation protocols, in the absence of chemical oxidants, are urgently desired. The inherent advantages and unique characteristics of organic electrosynthesis make fill this gap. Herein, recent progress in this area (until the end of September 2018) is summarized for different transition metals to highlight the potential sustainability of electro-organic chemistry.
Collapse
Affiliation(s)
- Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
34
|
Affiliation(s)
- Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Yulia B. Dudkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| |
Collapse
|
35
|
Budnikova YH. Opportunities and challenges for combining electro- and organometallic catalysis in C(sp2)-H phosphonation. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The chemistry of organoelemental compounds including carbon-phosphorus derivatives is now one of the most rapidly developing fields of research, regarding both fundamental science and solution of applied problems. Extensive opportunities for the synthesis of organophosphorus compounds are opened up by the use of unconventional methods, first of all, electrochemical ones, which combine the benefits of usual homogeneous chemistry in solution and electrochemistry, where reactants are generated at the electrodes directly in the reaction system. The interest in the organic electrosynthesis is caused by several factors, including mild conditions (room temperature, atmospheric pressure), the possibility of conducting reactions in a closed system with a low concentration of the catalyst, which is readily regenerated. This mini-review generalizes the achievements in the field of development of new electrochemical, efficient and atom-economical, catalytic methods for the formation of aromatic carbon – phosphorus bonds and some historical background of these approaches.
Collapse
Affiliation(s)
- Yulia H. Budnikova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, KSC of RAS , 420088, Kazan, Arbuzov str., 8 , Kazan , Russia
| |
Collapse
|
36
|
Yang QL, Li CZ, Zhang LW, Li YY, Tong X, Wu XY, Mei TS. Palladium-Catalyzed Electrochemical C–H Alkylation of Arenes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00550] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qi-Liang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Chuan-Zeng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Liang-Wei Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yu-Yan Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Xiaofeng Tong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
37
|
Dudkina YB, Fayzullin RR, Lyssenko KA, Gubaidullin AT, Kholin KV, Levitskaya AI, Balakina MY, Budnikova YH. Cyclometalated Nickel Complexes as Key Intermediates in C(sp2)–H Bond Functionalization: Synthesis, Catalysis, Electrochemical Properties, and DFT Calculations. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yulia B. Dudkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Konstantin A. Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Alina I. Levitskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Marina Yu. Balakina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| |
Collapse
|
38
|
Yang QL, Wang XY, Lu JY, Zhang LP, Fang P, Mei TS. Copper-Catalyzed Electrochemical C-H Amination of Arenes with Secondary Amines. J Am Chem Soc 2018; 140:11487-11494. [PMID: 30165030 DOI: 10.1021/jacs.8b07380] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrochemical oxidation represents an environmentally friendly solution to conventional methods that require caustic stoichiometric chemical oxidants. However, C-H functionalizations merging transition-metal catalysis and electrochemical techniques are, to date, largely confined to the use of precious metals and divided cells. Herein, we report the first examples of copper-catalyzed electrochemical C-H aminations of arenes at room temperature using undivided electrochemical cells, thereby providing a practical solution for the construction of arylamines. The use of n-Bu4NI as a redox mediator is crucial for this transformation. On the basis of mechanistic studies including kinetic profiles, isotope effects, cyclic voltammetric analyses, and radical inhibition experiments, the reaction appears to proceed via a single-electron-transfer (SET) process, and a high valent Cu(III) species is likely involved. These findings provide a new avenue for transition-metal-catalyzed electrochemical C-H functionalization reactions using redox mediators.
Collapse
Affiliation(s)
- Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jia-Yan Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Li-Pu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
39
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
40
|
Khrizanforov M, Strekalova S, Khrizanforova V, Dobrynin A, Kholin K, Gryaznova T, Grinenko V, Gubaidullin A, Kadirov MK, Budnikova Y. Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions. Top Catal 2018. [DOI: 10.1007/s11244-018-1014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Abstract
Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.
Collapse
Affiliation(s)
- Siegfried R Waldvogel
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| | - Sebastian Lips
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Maximilian Selt
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany
| | - Barbara Riehl
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Christopher J Kampf
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| |
Collapse
|
42
|
Ma C, Fang P, Mei TS. Recent Advances in C–H Functionalization Using Electrochemical Transition Metal Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01697] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
43
|
Affiliation(s)
- Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Sano K, Kimura N, Kochi T, Kakiuchi F. Palladium‐Catalyzed C−H Iodination of
N
‐(8‐Quinolinyl)benzamide Derivatives Under Electrochemical and Non‐Electrochemical Conditions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katsuya Sano
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Naoki Kimura
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Takuya Kochi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
45
|
|
46
|
Ma C, Zhao CQ, Li YQ, Zhang LP, Xu XT, Zhang K, Mei TS. Palladium-catalyzed C-H activation/C-C cross-coupling reactions via electrochemistry. Chem Commun (Camb) 2018; 53:12189-12192. [PMID: 29067362 DOI: 10.1039/c7cc07429h] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-catalyzed C-H activation/C-C cross-coupling reactions typically require stoichiometric chemical oxidants and exogenous ligands. However, there are significant disadvantages associated with the use of traditional stoichiometric oxidants. To overcome these issues, we have developed an electrochemical strategy to achieve methylation and acylation.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tang S, Wang D, Liu Y, Zeng L, Lei A. Cobalt-catalyzed electrooxidative C-H/N-H [4+2] annulation with ethylene or ethyne. Nat Commun 2018; 9:798. [PMID: 29476057 PMCID: PMC5824839 DOI: 10.1038/s41467-018-03246-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
Ethylene and ethyne are among the simplest two-carbon building blocks. However, quite limited methods can be applied to incorporate ethylene or ethyne into fine chemicals. Here we demonstrate a cobalt-catalyzed dehydrogenative C–H/N–H [4+2] annulation of aryl/vinyl amides with ethylene or ethyne by using an electrochemical reaction protocol. Significantly, this work shows an example of electrochemical recycling of cobalt catalyst in oxidative C–H functionalization reactions, avoiding the use of external chemical oxidants and co-oxidants. The electrochemical method provides a reliable and safe way for incorporating gas-phase ethylene or ethyne into fine chemicals. High reaction efficiency and good functional group tolerance are observed under divided electrolytic conditions. Catalytic methodologies that incorporate commodity chemicals ethylene and ethyne into fine chemicals are quite limited. Here, the authors show a cobalt-catalyzed electrochemical C-H/N–H [4+2] annulation of aryl/vinyl amides with ethylene or ethyne to produce N-heterocycles in absence of oxidants.
Collapse
Affiliation(s)
- Shan Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Dan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yichang Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Li Zeng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. .,The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
48
|
Yang QL, Fang P, Mei TS. Recent Advances in Organic Electrochemical C-H Functionalization. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700740] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
| |
Collapse
|
49
|
Shrestha A, Lee M, Dunn AL, Sanford MS. Palladium-Catalyzed C-H Bond Acetoxylation via Electrochemical Oxidation. Org Lett 2018; 20:204-207. [PMID: 29272130 PMCID: PMC5772685 DOI: 10.1021/acs.orglett.7b03559] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we describe the development of a method for the Pd-catalyzed electrochemical acetoxylation of C-H bonds. The oxidation step of the catalytic cycle is probed through cyclic voltammetry and bulk electrolysis studies of a preformed palladacycle of 8-methylquinoline. A catalytic system for C-H acetoxylation is then developed and optimized with respect to the cell configuration, rate of oxidation, and chemistry at the counter electrode. This transformation is then applied to substrates containing various directing groups and to the acetoxylation of both C(sp2)-H and C(sp3)-H bonds.
Collapse
Affiliation(s)
- Anuska Shrestha
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melissa Lee
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Anna L. Dunn
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Yurko EO, Gryaznova TV, Kholin KV, Khrizanforova VV, Budnikova YH. External oxidant-free cross-coupling: electrochemically induced aromatic C–H phosphonation of azoles with dialkyl-H-phosphonates under silver catalysis. Dalton Trans 2018; 47:190-196. [DOI: 10.1039/c7dt03650g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A convenient external oxidant-free method of azole derivatives phosphorylation by dialkyl-H-phosphonates through electrochemical catalytic oxidation in the presence of silver salts (1%) is proposed.
Collapse
Affiliation(s)
- E. O. Yurko
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - T. V. Gryaznova
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - K. V. Kholin
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - V. V. Khrizanforova
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Y. H. Budnikova
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| |
Collapse
|