1
|
Pruchnik H, Solarska-Ściuk K, Dudek A, Włoch A. Impact of a Palladium(II)-tris(2-carboxyethyl)phosphine Complex on Normal Cells: Toxicity and Membrane Interaction. Molecules 2025; 30:476. [PMID: 39942580 PMCID: PMC11821180 DOI: 10.3390/molecules30030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Palladium(II) complexes with tris(2-carboxyethyl)phosphine (PdTCEP) show promise for biomedical applications due to their distinct chemical characteristics. This study explored the toxicity of PdTCEP towards normal human cells and examined its interactions with model cell membranes. Two cell types were used to evaluate cytotoxicity: human microvascular endothelial cells (HMEC-1) and red blood cells (RBCs). In HMEC-1 cells, PdTCEP reduced survival to about 80% at 15 µM, with the most significant drop-down to 40%-occurring at 40 µM. The production of reactive oxygen species (ROS) increased in a manner dependent on both dose and time, especially after 72 h of incubation. Despite these effects, PdTCEP caused only minor hemolysis in RBCs, with hemolysis levels staying below 10% even at higher concentrations. Fluorescence anisotropy measurements showed that PdTCEP minimally affects the hydrophobic core of the lipid bilayer, with slight changes observed at concentrations above 40 µM. Generalized polarization (GP) analysis indicated a slight decrease in lipid polar head packing with increasing PdTCEP concentration. Complementary FTIR analysis supported these findings by providing detailed insights into PdTCEP-membrane interactions. This research underscores PdTCEP's selective cytotoxicity and structural effects on membranes, suggesting its promise for more in-depth biological and pharmacological studies.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.D.); (A.W.)
| | - Katarzyna Solarska-Ściuk
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Anita Dudek
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.D.); (A.W.)
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.D.); (A.W.)
| |
Collapse
|
2
|
Galuppo C, Gomes de Oliveira Junior A, Dos Santos Oliveira L, de Souza Guarda PH, Buffon R, Abbehausen C. Reactivity of Ni II, Pd II and Pt II complexes bearing phosphine ligands towards Zn II displacement and hydrolysis in Cis 2His 2 and Cis 3His zinc-fingers domains. J Inorg Biochem 2023; 240:112117. [PMID: 36635196 DOI: 10.1016/j.jinorgbio.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
A systematic study of the effect of phosphine and bis-phosphine ligands in the interaction of NiII, PdII, and PtII complexes with two classes of zinc fingers was performed. The Cys2His2, finger 3 of specific protein-1, and the Cys2HisCys C-terminal zinc finger of nucleocapsid protein 7 of the HIV-1 were used as models of the respective class. In general, phosphine ligands favor the metal binding to the peptide, although the bis-phosphine ligands produce more specific binding than the monodentate. In the case of nickel complexes, the interaction of NiII ions with the sequence SKH, present in Cys2His2, results in hydrolysis, contrasting to the preferred zinc ejection produced by the NiII complexes with chelating phosphines, producing Ni(bis-phosphine) fingers. In the absence of the SKH sequence, zinc ejection is observed with the formation of nickel fingers, with reactivity dependent on the phosphine. On the other hand, Pd(phosphines) produces Pd2 fingers in the case of triphenylphosphine with the phosphine coordinated as intermediate species. The bis-phosphine ligands produce very clean spectra and a stable signal Pd(bis-phosphine)finger. Interestingly, phosphines produce very reactive platinum complexes, which eject zinc and promote peptide hydrolysis. The results reported here are relevant to the understanding of the mechanism of these interactions and how to modulate metallocompounds for zinc finger interference.
Collapse
Affiliation(s)
- Carolina Galuppo
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Laiane Dos Santos Oliveira
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Regina Buffon
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Yoshinari N, Konno T. Multitopic metal–organic carboxylates available as supramolecular building units. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
The difference of uranyl (UO22+) complexes with Nitrilotri–3–propanoic acid and Tris(2–carboxyethyl) phosphine: N–tricarboxylate versus P–tricarboxylate. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Henklewska M, Pawlak A, Kutkowska J, Pruchnik H, Rapak A, Obminska-Mrukowicz B. In vitro effects of the activity of novel platinum (II) complex in canine and human cell lines. Vet Comp Oncol 2019; 17:497-506. [PMID: 31111625 DOI: 10.1111/vco.12511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/04/2023]
Abstract
The anticancer activity of novel platinum derivative, a complex of platinum with tris(2-carboxyethyl)phosphine (Pt-TCEP), has been evaluated in canine (D-17) and human osteosarcoma (U2-OS) cell lines. Viability of cells after incubation for 24 or 72 hours with increasing concentrations (0.625, 1.25, 2.50, 5, 10 and 20 μM) of Pt-TCEP was tested in an MTT assay and compared to effect of cisplatin. Longer-term effect of Pt-TCEP was evaluated in the colony-forming unit assay after 24 hours exposure to the Pt-TCEP (2 and 3 μM) and subsequent incubation for 2 weeks. The influence of the compound on the cell cycle was measured after 24 hours treatment with Pt-TCEP (3 μM). Its pro-apoptotic activity was examined after 24 hours treatment with Pt-TCEP (1.25, 2.50, 5, 10 and 20 μM) using flow cytometry. Expression of main proteins involved in apoptosis was measured after exposure for 24 hours to 3 or 5 μM Pt-TCEP in Western Blot. The compound much more effectively decreased cell viability than cisplatin in case of both cell lines. IC50 of Pt-TCEP was 5.93 ± 0.12 in D-17 and 3.45 ± 0.14 in U2-OS cell lines after 24 hours, and 1.77 ± 0.14 in D-17 and 1.53 ± 0.11 in U2-OS after 72 hours (P < .05). The compound arrested cells in the G2/M phase and inhibited the ability of cells to form colonies. Pt-TCEP induced caspase-dependent apoptosis. The expression of the anti-apoptotic Bcl-XL protein was decreased after Pt-TCEP treatment in both cell lines. The results confirmed anti-cancer activity of Pt-TCEP against canine and human osteosarcoma cell lines.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, Wroclaw, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, Wroclaw, Poland
| | - Bozena Obminska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
6
|
Linear gold(I) complex with tris-(2-carboxyethyl)phosphine (TCEP): Selective antitumor activity and inertness toward sulfur proteins. J Inorg Biochem 2018; 186:104-115. [PMID: 29885553 DOI: 10.1016/j.jinorgbio.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-β-lactamase and metallo-β-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-β-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.
Collapse
|
7
|
Echeverri M, Alvarez-Valdés A, Navas F, Perles J, Sánchez-Pérez I, Quiroga AG. Using phosphine ligands with a biological role to modulate reactivity in novel platinum complexes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171340. [PMID: 29515851 PMCID: PMC5830740 DOI: 10.1098/rsos.171340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 05/04/2023]
Abstract
Three platinum complexes with cis and trans configuration cis-[Pt(TCEP)2Cl2], cis-[Pt(tmTCEP)2Cl2] and trans-[Pt(TCEP)2Cl2], where TCEP is tris(2-carboxyethyl)phosphine, have been synthesized and fully characterized by usual techniques including single-crystal X-ray diffraction for trans-[Pt(TCEP)2Cl2] and cis-[Pt(tmTCEP)2Cl2]. Here, we also report on an esterification process of TCEP, which takes place in the presence of alcohols, leading to a platinum complex coordinated to an ester tmTCEP (2-methoxycarbonylethyl phosphine) ligand. The stability in solution of the three compounds and their interaction with biological models such as DNA (pBR322 and calf thymus DNA) and proteins (lysozyme and RNase) have also been studied.
Collapse
Affiliation(s)
- Marcelo Echeverri
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Francisco Navas
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Josefina Perles
- Single Crystal XRD Laboratory, SIdI, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - A. G. Quiroga
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Pruchnik H, Kral T, Hof M. Interaction of Newly Platinum(II) with Tris(2-carboxyethyl)phosphine Complex with DNA and Model Lipid Membrane. J Membr Biol 2017; 250:461-470. [PMID: 28741121 PMCID: PMC5613069 DOI: 10.1007/s00232-017-9972-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
Abstract
Structural properties of plasmid DNA and model lipid membrane treated with newly synthesized platinum(II) complex cis-[PtCl2{P(CH2CH2COOH)3}2] (cis-DTCEP for short) were studied and compared with effects of anticancer drug cisplatin, cis-[Pt(NH3)2Cl2] (cis-DDP for short). Time Correlated Single Photon Counting Fluorescence Correlation Spectroscopy (TCSPC-FCS) was employed to study interactions between those platinum complexes and DNA. The TCSPC-FCS results suggest that bonding of cis-DTCEP derivative to DNA leads to plasmid strain realignment towards much more compact structure than in the case of cis-DDP. Application of both differential scanning calorimetry and infrared spectroscopy to platinum complexes/DPPC showed that cis-DTCEP slightly increases the phospholipid’s main phase transition temperature resulting in decreased fluidity of the model membrane. The newly investigated compound—similarly to cis-DDP—interacts mainly with the DPPC head group however not only by the means of electrostatic forces: this compound probably enters into hydrophilic region of the lipid bilayer and forms hydrogen bonds with COO groups of glycerol and PO2− group of DPPC.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375, Wrocław, Poland.
| | - Teresa Kral
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375, Wrocław, Poland.,J. Heyrovsky Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| |
Collapse
|
9
|
Pruchnik H, Latocha M, Zielińska A, Pruchnik FP. Rhodium(III) and iridium(III) pentamethylcyclopentadienyl complexes with tris(2-carboxyethyl)phosphine, properties and cytostatic activity. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Chan H, Pearson CS, Green CM, Li Z, Zhang J, Belfort G, Shekhtman A, Li H, Belfort M. Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy. J Biol Chem 2016; 291:22661-22670. [PMID: 27609519 DOI: 10.1074/jbc.m116.747824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/29/2016] [Indexed: 01/10/2023] Open
Abstract
Inteins, self-splicing protein elements, interrupt genes and proteins in many microbes, including the human pathogen Mycobacterium tuberculosis Using conserved catalytic nucleophiles at their N- and C-terminal splice junctions, inteins are able to excise out of precursor polypeptides. The splicing of the intein in the mycobacterial recombinase RecA is specifically inhibited by the widely used cancer therapeutic cisplatin, cis-[Pt(NH3)2Cl2], and this compound inhibits mycobacterial growth. Mass spectrometric and crystallographic studies of Pt(II) binding to the RecA intein revealed a complex in which two platinum atoms bind at N- and C-terminal catalytic cysteine residues. Kinetic analyses of NMR spectroscopic data support a two-step binding mechanism in which a Pt(II) first rapidly interacts reversibly at the N terminus followed by a slower, first order irreversible binding event involving both the N and C termini. Notably, the ligands of Pt(II) compounds that are required for chemotherapeutic efficacy and toxicity are no longer bound to the metal atom in the intein adduct. The lack of ammine ligands and need for phosphine represent a springboard for future design of platinum-based compounds targeting inteins. Because the intein splicing mechanism is conserved across a range of pathogenic microbes, developing these drugs could lead to novel, broad range antimicrobial agents.
Collapse
Affiliation(s)
- Hon Chan
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - C Seth Pearson
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Cathleen M Green
- From the Department of Biological Sciences and RNA Institute and
| | - Zhong Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Jing Zhang
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alex Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222
| | - Hongmin Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and.,Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute and
| |
Collapse
|
11
|
Pruchnik H, Lis T, Latocha M, Zielińska A, Pruchnik FP. Palladium(II) complexes with tris(2-carboxyethyl)phosphine, structure, reactions and cytostatic activity. J Inorg Biochem 2016; 156:14-21. [DOI: 10.1016/j.jinorgbio.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/25/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
12
|
Bi H, Dai Y, Xu J, Lv R, He F, Gai S, Yang D, Yang P. CuS–Pt(iv)–PEG–FA nanoparticles for targeted photothermal and chemotherapy. J Mater Chem B 2016; 4:5938-5946. [DOI: 10.1039/c6tb01540a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CuS–Pt(iv) nanoparticles exhibited high in vitro and in vivo anti-tumor efficiency, which was caused by the integrated Pt drug-induced chemotherapy and CuS nanoparticle-mediated photothermal therapy (PTT) upon irradiation with near infrared (NIR) light.
Collapse
Affiliation(s)
- Huiting Bi
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Ruichan Lv
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|