1
|
Talaat N, Abass M, Mohamed Hassanin H, Abdel-Kader D. Synthesis and anticancer activity of oxazolo and oxazinoquinolinone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nancy Talaat
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | | | - Dalia Abdel-Kader
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X. Cyclopropenium Cationic-Based Covalent Organic Polymer-Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for All-Solid-State Li-S Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16469-16477. [PMID: 33813826 DOI: 10.1021/acsami.1c02309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cyclopropenium cationic-based covalent organic polymer (iCP@TFSI) was successfully prepared through the SN2 reaction and ion replacement process, which can be incorporated into the PEO/LiTFSI matrix as a filler. The obtained solid-state polymer electrolytes were utilized for an all-solid-state lithium-sulfur (Li-S) battery. Padding iCP@TFSI into the PEO matrix not only has a positive influence on both the ionic conductivity and the mechanical capacity of solid-state polymer electrolytes but also increases the stability of the lithium metal anode, which essentially improves the overall cycling ability of all-solid-state Li-S batteries. Among the membranes attained, the PEO-10%iCP@TFSI electrolyte displays the best ionic conductivity up to 1.2 × 10-3 S·cm-1 at 80 °C. The symmetrical lithium battery exhibits higher cycle stability (600 h) due to the higher mechanical properties related to more stable lithium metal interfaces. The Li-S battery based on the PEO-10%iCP@TFSI electrolyte exhibits excellent electrochemical performance with better Coulombic efficiency and outstanding cycling stability. Its capacity is maintained at 490 mAh·g-1 after 500 cycles at 1 C with a 0.032% decay rate each cycle, and the Coulombic efficiency is close to 100% during the whole cycling.
Collapse
Affiliation(s)
- Yu Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong 226019, Jiangsu Province, P. R. China
| | - Xiaona Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiaoxia Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
3
|
Bora D, Kaushal A, Shankaraiah N. Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur J Med Chem 2021; 215:113263. [PMID: 33601313 DOI: 10.1016/j.ejmech.2021.113263] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Spirocompounds constitute an important class of organic frameworks enveloping numerous pharmacological activities, among them, the promising anticancer potential of spirocompounds have enthused medicinal chemists to explore new spiro derivatives with significantly improved pharmacodynamic and pharmacokinetic profile along with their mechanism of action. The current review intends to provide a sketch of the anticancer activity of various spirocompounds like spirooxindole, spiroisoxazole, spiroindole etc, from the past five years unfolding various aspects of pharmacological activities and their structure-activity relationships (SARs). This literature analysis may provide future direction for the efficient design of novel spiromolecules with enhanced safety and efficacy.
Collapse
Affiliation(s)
- Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anjali Kaushal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
4
|
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem 2021; 109:104639. [PMID: 33618829 DOI: 10.1016/j.bioorg.2021.104639] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Quinoline is a versatile pharmacophore, a privileged scaffold and an outstanding fused heterocyclic compound with a wide range of pharmacological prospective such as anticancer, anti-inflammatory, antibacterial, antiviral drug and superlative moiety in drug discovery. The quinoline hybrids have already been shown excellent results with new targets with a different mode of actions as an inhibitor of cell proliferation by cell cycle arrest, apoptosis, angiogenesis, disruption of cell migration and modulation. This review emphasized the mode of action, structure activity relationship and molecular docking to reveal the various active pharmacophores of quinoline hybrids accountable for novel anticancer, anti-inflammatory, antibacterial and miscellaneous activities. Therefore, several quinoline candidates are under clinical trials for the treatment of certain diseases, for example ferroquine (antimalarial), dactolisib (antitumor) and pelitinib (EGFR TK inhibitors) etc. Plenty of research has been summarized the recent advances of quinoline derivatives and explore the various therapeutic prospects of this moiety. This review would help the researchers to strategically design diverse novel quinoline derivatives for the development of clinically viable drug candidates for the treatment of incurable diseases.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| |
Collapse
|
5
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
6
|
Rearrangements of diferrocenylcyclopropenium ions in the reactions with bis-1,4-O,S-nucleophiles. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Litterscheidt J, Bandar JS, Ebert M, Forschner R, Bader K, Lambert TH, Frey W, Bühlmeyer A, Brändle M, Schulz F, Laschat S. Self-Assembly of Aminocyclopropenium Salts: En Route to Deltic Ionic Liquid Crystals. Angew Chem Int Ed Engl 2020; 59:10557-10565. [PMID: 32119178 PMCID: PMC7317216 DOI: 10.1002/anie.202000824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Indexed: 01/27/2023]
Abstract
Aminocyclopropenium ions have raised much attention as organocatalysts and redox active polymers. However, the self-assembly of amphiphilic aminocyclopropenium ions remains challenging. The first deltic ionic liquid crystals based on aminocyclopropenium ions have been developed. Differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction provided insight into the unique self-assembly and nanosegregation of these liquid crystals. While the combination of small headgroups with linear p-alkoxyphenyl units led to bilayer-type smectic mesophases, wedge-shaped units resulted in columnar mesophases. Upon increasing the size and polyphilicity of the aminocyclopropenium headgroup, a lamellar phase was formed.
Collapse
Affiliation(s)
- Juri Litterscheidt
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Jeffrey S. Bandar
- Department of ChemistryColorado State UniversityFort CollinsCO80523USA
| | - Max Ebert
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Robert Forschner
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Korinna Bader
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Tristan H. Lambert
- Department of Chemistry & Chemical BiologyCornell University122 Baker LaboratoryIttacaNY14853USA
- Department of ChemistryColumbia UniversityNew YorkNY10027USA
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Andrea Bühlmeyer
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Marcus Brändle
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Finn Schulz
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Laschat
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
8
|
Litterscheidt J, Bandar JS, Ebert M, Forschner R, Bader K, Lambert TH, Frey W, Bühlmeyer A, Brändle M, Schulz F, Laschat S. Self‐Assembly of Aminocyclopropenium Salts: En Route to Deltic Ionic Liquid Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Juri Litterscheidt
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Max Ebert
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Robert Forschner
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Korinna Bader
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Tristan H. Lambert
- Department of Chemistry & Chemical Biology Cornell University 122 Baker Laboratory Ittaca NY 14853 USA
- Department of Chemistry Columbia University New York NY 10027 USA
| | - Wolfgang Frey
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Andrea Bühlmeyer
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Marcus Brändle
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Finn Schulz
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
9
|
Abdel‐Kader D, Abass M. Synthesis of some oxazolo and oxazinopyrano[3,2‐
c
]quinolines and their antitumor activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dalia Abdel‐Kader
- Department of Chemistry, Faculty of EducationAin Shams University Cairo Egypt
| | - Mohamed Abass
- Department of Chemistry, Faculty of EducationAin Shams University Cairo Egypt
| |
Collapse
|
10
|
Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des 2019; 95:16-47. [DOI: 10.1111/cbdd.13633] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department University of Technology Baghdad Iraq
| | - Ahmed Mahal
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangzhou HC Pharmaceutical Co., Ltd. Guangzhou China
| | - Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Ashish K. Sarangi
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Mohammad Rizki Fadhil Pratama
- Department of Pharmacy Faculty of Health Sciences Muhammadiyah University of Palangkaraya Palangka Raya Indonesia
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Airlangga University Surabaya Indonesia
| |
Collapse
|
11
|
Diferrocenyl(hydroxy)oxazepines and diferrocenyl-4-aza-1,3-dienes in the reactions of 2,3-diferrocenyl-1-methylthiocyclopropenylium iodide with aromatic and aliphatic bis-1,4-N,O-nucleophiles. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Sánchez-García JJ, Flores-Alamo M, Martínez-Falcón E, Klimova EI. 5-Chloro-2-ferrocenylbenzo[ d]oxazole. IUCRDATA 2019. [DOI: 10.1107/s2414314619010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The asymmetric unit of the title compound, [Fe(C5H5)(C12H7ClNO)], consists of one ferrocenyl group bonded to chlorobenzo[d]oxazole. The conformation of the ferrocenyl moiety is slightly away from eclipsed. The bond angles between the 5-chloro-benzoxazole and ferrocenyl fragments are N—C—C = 127.4 (7)° and O—C—C = 116.8 (7)°. The benzo[d]oxazole ring is planar (r.m.s. deviation = 0.0042 Å) and makes an angle of 11.3 (4)° with the cyclopentadienyl ring attached to it. The crystal packing is characterized by intermolecular π–π contacts, resulting in chain formation along the b-axis direction. The centroid-to-centroid distance between the six- and five-membered rings is 3.650 (5) Å. Together with a C—H...π interaction, these intermolecular contacts form laminar arrays along the ac plane.
Collapse
|