1
|
New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J Biol Inorg Chem 2022; 27:421-429. [PMID: 35332377 PMCID: PMC8948040 DOI: 10.1007/s00775-022-01937-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound Na2[B10H9–O(CH2)4C(O)–His–OMe] was isolated and characterized. This compound has an inorganic hydrophobic core which is the 10-vertex boron cage and the –O(CH2)4C(O)–His–OMe organic substituent. It has been shown to possess strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral action is discussed.
Collapse
|
2
|
Avdeeva VV, Garaev TM, Malinina EA, Zhizhin KY, Kuznetsov NT. Physiologically Active Compounds Based on Membranotropic Cage Carriers–Derivatives of Adamantane and Polyhedral Boron Clusters (Review). RUSS J INORG CHEM+ 2022. [PMCID: PMC8824546 DOI: 10.1134/s0036023622010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on compounds based on cage structures―boron clusters (polyhedral boron hydrides, carboranes, metallacarboranes) and compounds of the adamantane series, which possess physiological activity, have been generalized. The main emphasis is placed on the antiviral activity of the compounds. The mechanism of the possible action of the replication inhibitors of influenza A virus strains is considered, the molecular model of viroporin inhibitors is discussed. The proposed model consists of a cage hydrophobic core that performs the function of a membranotropic carrier (a boron cluster or adamantane fragment), into which physiologically active functional groups are introduced. The relationship between the structure of the cage compound with the introduced substitute and the biologically active properties of this molecular structure has been analyzed.
Collapse
Affiliation(s)
- V. V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. M. Garaev
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - E. A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - K. Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Synthesis, characterization, and in vitro assessment of cytotoxicity for novel azaheterocyclic nido-carboranes – Candidates in agents for boron neutron capture therapy (BNCT) of cancer. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Bednarska-Szczepaniak K, Mieczkowski A, Kierozalska A, Pavlović Saftić D, Głąbała K, Przygodzki T, Stańczyk L, Karolczak K, Watała C, Rao H, Gao ZG, Jacobson KA, Leśnikowski ZJ. Synthesis and evaluation of adenosine derivatives as A 1, A 2A, A 2B and A 3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A 3 agonists. Eur J Med Chem 2021; 223:113607. [PMID: 34171656 PMCID: PMC8448983 DOI: 10.1016/j.ejmech.2021.113607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023]
Abstract
A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.
Collapse
Affiliation(s)
| | - Adam Mieczkowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kierozalska
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Dijana Pavlović Saftić
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Konrad Głąbała
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Tomasz Przygodzki
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Lidia Stańczyk
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland.
| |
Collapse
|
5
|
Smyshliaeva LA, Varaksin MV, Fomina EI, Joy MN, Bakulev VA, Charushin VN, Chupakhin ON. Cu(I)-Catalyzed Cycloaddition of Vinylacetylene ortho-Carborane and Arylazides in the Design of 1,2,3-Triazolyl-Modified Vinylcarborane Fluorophores. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lidia A. Smyshliaeva
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Mikhail V. Varaksin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | | | | | - Vasiliy A. Bakulev
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Valery N. Charushin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Oleg N. Chupakhin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| |
Collapse
|
6
|
Etse KS, Lamela LC, Zaragoza G, Pirotte B. Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.2.91-99.1973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The title compound 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione was obtained by reaction of thymine with 3-nitrobenzylbromide in the presence of cesium carbonate. Characterization of the product was achieved by NMR spectroscopy and its stability was probed in basic condition using UV-Visible analysis. Furthermore, the molecular structure was confirmed by X-ray diffraction analysis. The compound crystallizes in orthorhombic Pna21 space group with unit cell parameters a = 14.9594 (15) Å, b = 25.711 (3) Å, c = 4.5004 (4) Å, V = 1731.0 (3) Å3 and Z = 4. The crystal packing of the title compound is stabilized by intermolecular hydrogen bond, π···π and C−H···π stacking interactions. The intermolecular interactions were furthermore analyzed through the mapping of different Hirshfeld surfaces. The two-dimensional fingerprint revealed that the most important contributions to these surfaces come from O···H (37.1%), H···H (24%) and H···C/C···H (22.6%) interactions. The interaction energies stabilizing the crystal packing were calculated and were presented graphically as framework energy diagrams. Finally, the energy-framework analysis reveals that π···π and C−H···π interactions energies are mainly dispersive and are the most important forces in the crystal.
Collapse
Affiliation(s)
- Koffi Senam Etse
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Laura Comeron Lamela
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus VIDA, 15782 Santiago de Compostela, Spain
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| |
Collapse
|
7
|
Comparative study of the effects of ortho-, meta- and para-carboranes (C2B10H12) on the physicochemical properties, cytotoxicity and antiviral activity of uridine and 2′-deoxyuridine boron cluster conjugates. Bioorg Chem 2020; 94:103466. [DOI: 10.1016/j.bioorg.2019.103466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
8
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019; 58:3162-3166. [DOI: 10.1002/anie.201900283] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|