1
|
Belli RG, Muir V, Dyck NB, Pantazis DA, Sousa TPA, Slusar CR, Parkin HC, Rosenberg L. Exploring Electrophilic Hydrophosphination via Metal Phosphenium Intermediates. Chemistry 2024; 30:e202302924. [PMID: 38242847 DOI: 10.1002/chem.202302924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Two Mo(0) phosphenium complexes containing ancillary secondary phosphine ligands have been investigated with respect to their ability to participate in electrophilic addition at unsaturated substrates and subsequent P-H hydride transfer to "quench" the resulting carbocations. These studies provide stoichiometric "proof of concept" for a proposed new metal-catalyzed electrophilic hydrophosphination mechanism. The more strongly Lewis acidic phosphenium complex, [Mo(CO)4(PR2H)(PR2)]+ (R=Ph, Tolp), cleanly hydrophosphinates 1,1-diphenylethylene, benzophenone, and ethylene, while other substrates react rapidly to give products resulting from competing electrophilic processes. A less Lewis acidic complex, [Mo(CO)3(PR2H)2(PR2)]+, generally reacts more slowly but participates in clean hydrophosphination of a wider range of unsaturated substrates, including styrene, indene, 1-hexene, and cyclohexanone, in addition to 1,1-diphenylethylene, benzophenone, and ethylene. Mechanistic studies are described, including stoichiometric control reactions and computational and kinetic analyses, which probe whether the observed P-H addition actually does occur by the proposed electrophilic mechanism, and whether hydridic P-H transfer in this system is intra- or intermolecular. Preliminary reactivity studies indicate challenges that must be addressed to exploit these promising results in catalysis.
Collapse
Affiliation(s)
- Roman G Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Vanessa Muir
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Nicholas B Dyck
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tânia P A Sousa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Carly R Slusar
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Hayley C Parkin
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| |
Collapse
|
2
|
Janssen M, Mebs S, Beckmann J. Kinetically Stabilized Diarylpnictogenium Ions. Chempluschem 2023; 88:e202200429. [PMID: 36670087 DOI: 10.1002/cplu.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The newly prepared and fully characterized stibenium and bismuthenium ions [Rind MesE]+ (E=Sb, Bi; Rind =dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene) were rigorously compared to the previously communicated phosphenium and arsenium ions (E=P, As) as well as the bis(m-terphenyl) pnictogenium ions [(2,6-Mes2 C6 H3 )2 E]+ (E=Sb, Bi). It is demonstrated that the choice of the aryl substituents dramatically effects the molecular structures (e. g. the primary E-C bond lengths) and the electronic structures (e. g. the energy of the LUMOs).
Collapse
Affiliation(s)
- Marvin Janssen
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| |
Collapse
|
3
|
Belli RG, Pantazis DA, McDonald R, Rosenberg L. Reversible Silylium Transfer between P-H and Si-H Donors. Angew Chem Int Ed Engl 2021; 60:2379-2384. [PMID: 33031611 DOI: 10.1002/anie.202011372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/11/2022]
Abstract
The Mo=PR2 π* orbital in a Mo phosphenium complex acts as acceptor in a new PIII -based Lewis superacid. This Lewis acid (LA) participates in electrophilic Si-H abstraction from E3 SiH to give a Mo-bound secondary phosphine ligand, Mo-PR2 H. The resulting Et3 Si+ ion remains associated with the Mo complex, stabilized by η1 -P-H donation, yet undergoes rapid exchange with an η1 -Si-H adduct of free silane in solution. The equilibrium between these two adducts presents an opportunity to assess the role of this new LA in catalytic reactions of silanes: is the LA acting as a catalyst or as an initiator? Preliminary results suggest that a cycle including the Mo-bound phosphine-silylium adduct dominates in the catalytic hydrosilylation of acetophenone, relative to a putative cycle involving the silane-silylium adduct or "free" silylium.
Collapse
Affiliation(s)
- Roman G Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| |
Collapse
|
4
|
Belli RG, Pantazis DA, McDonald R, Rosenberg L. Reversible Silylium Transfer between P‐H and Si‐H Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry University of Victoria P.O. Box 1700 STN CSC Victoria British Columbia V8W 2Y2 Canada
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Robert McDonald
- X-ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Lisa Rosenberg
- Department of Chemistry University of Victoria P.O. Box 1700 STN CSC Victoria British Columbia V8W 2Y2 Canada
| |
Collapse
|
5
|
Korb M, Liu X, Walz S, Rosenkranz M, Dmitrieva E, Popov AA, Lang H. (Electrochemical) Properties and Computational Investigations of Ferrocenyl-substituted Fe 3(μ 3-PFc) 2(CO) 9 and Co 4(μ 4-PFc) 2(CO) 9 Clusters and Their Reduced Species. Inorg Chem 2020; 59:6147-6160. [PMID: 32323982 DOI: 10.1021/acs.inorgchem.0c00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of ferrocenyl-functionalized iron and cobalt carbonyl clusters is reported, based on a reaction of FcPCl2 (3) (Fc = Fe(η5-C5H5)(η5-C5H4)) with Fe2(CO)9 and Co2(CO)8, respectively. Therein, nido-Fe3(CO)9(μ3-PFc)2 (4) and nido-Co4(CO)10(μ3-PFc)2 (5) clusters were obtained as the first diferrocenyl-substituted carbonyl clusters with a symmetrical cluster core. Cluster 4 shows two reversible one-electron processes within the anodic region, based on Fc/Fc+ redox events, as well as two processes in the cathodic region. In situ IR and electron paramagnetic resonance (EPR) measurements of all electronic states confirmed an Fc-based oxidation and a core-based reduction. On the basis of the results of a single-crystal X-ray analysis of structures of 4 and 5, computational studies of the highest occupied molecular orbital-lowest unoccupied molecular orbital energies, the spin density, quantum theory of atom-in-molecule delocalization indices, and the atomic charges were performed to explain the experimental results. The latter revealed a reorganization of the cluster core upon reduction and the existence of weak P···P interactions in 4 and 5. Ferrocenyl-related redox processes, occurring reversibly in case of 4, were absent for 5, due to a different distribution of the HOMO energies. EPR measurements furthermore confirmed the core-based radical anion and the formation of a decomposition product at potentials lower than [M]2- (M = Fe, Co).
Collapse
Affiliation(s)
- Marcus Korb
- Faculty of Sciences, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, 6009 Crawley, Perth, Western Australia, Australia
| | - Xianming Liu
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Sebastian Walz
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Heinrich Lang
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.,Center for Materials, Architectures and Integration of Nanomembranes, Rosenbergstr. 6, D-09126 Chemnitz, Germany
| |
Collapse
|