1
|
Shen G, Bi K, Wang D, Zhao Z, Tang X, Huang X, Lv X. Condition-Controlled Divergent Selective Synthesis of ( Z)- N-Vinyl and N-Allenyl Benzimidazoles by Pd- or Bi-Catalyzed Direct N-Alkenylation Reactions. J Org Chem 2025; 90:2602-2612. [PMID: 39915911 DOI: 10.1021/acs.joc.4c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We have developed a condition-controlled divergent synthesis of (Z)-N-vinyl and N-allenyl benzimidazoles from 1,1,3-triphenylprop-2-yn-1-ols and benzimidazoles through Pd- or Bi-catalyzed N-alkenylation reactions involving nucleophilic attack and C-C bond cleavage processes. The desired two different kinds of products can be conveniently and selectively synthesized by using this strategy, which features stereospecific synthesis, good functional group tolerance, a broad substrate scope, and high efficiency. The strategy provides significant advantages for the synthesis of biologically and pharmaceutically active imidazoheterocycles.
Collapse
Affiliation(s)
- Guodong Shen
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Kun Bi
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Dehe Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Zhirong Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Xuan Tang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Xin Lv
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, P. R. China
| |
Collapse
|
2
|
de Jesus IS, Trindade Gomes A, Sande I, Cunha S. Three-Component Synthesis of 1-Substituted 5-Aminotetrazoles Promoted by Bismuth Nitrate. J Org Chem 2024; 89:14279-14290. [PMID: 39269756 PMCID: PMC11459472 DOI: 10.1021/acs.joc.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
A nontoxic bismuth-promoted multicomponent synthesis of 5-aminotetrazoles and bistetrazoles is reported. The reaction of phenyl isothiocyanate, NaN3, and amine (primary aliphatic, aromatic, and aliphatic diamine) promoted by Bi(NO3)3·5H2O under microwave heating affords good yields, short reaction times, simple workup, and purification without column chromatography. A set of diagnostic 1H NMR signals was identified as a guide for quickly elucidating the exclusive (or main) regioisomer formed, with the stronger electron donor group located at heterocyclic nitrogen 1. This regioselectivity is strongly dependent on the electronic density of the amine. It is opposite to that obtained by several thiourea desulfurization methods promoted by thiophilic metals and metal-free protocols.
Collapse
Affiliation(s)
- Iva S. de Jesus
- Instituto
de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | - Amenson Trindade Gomes
- Instituto
de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | - Igor Sande
- Instituto
de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | - Silvio Cunha
- Instituto
de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
- Instituto
Nacional de Ciência e Tecnologia - INCT em Energia e Ambiente, Campus Ondina, Salvador, Bahia 40170-290, Brazil
| |
Collapse
|
3
|
Radakovic N, Nikolić A, Jovanović NT, Stojković P, Stankovic N, Šolaja B, Opsenica I, Pavic A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. Eur J Med Chem 2022; 230:114137. [PMID: 35077918 DOI: 10.1016/j.ejmech.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.
Collapse
Affiliation(s)
- Natasa Radakovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Andrea Nikolić
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia
| | - Nataša Terzić Jovanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Pavle Stojković
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
| | - Igor Opsenica
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
4
|
Nikolić AM, Stanić J, Zlatar M, Gruden M, And Elković B, Selaković Ž, Ajdačić V, Opsenica IM. Controlling Pd-Catalyzed N-Arylation and Dimroth Rearrangement in the Synthesis of N,1-Diaryl-1 H-tetrazol-5-amines. J Org Chem 2021; 86:4794-4803. [PMID: 33683905 DOI: 10.1021/acs.joc.1c00282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pd-catalyzed N-arylation method for the synthesis of eighteen N,1-diaryl-1H-tetrazol-5-amine derivatives is reported. By running the reactions at 35 °C, compounds were isolated as single isomers since the undesired Dimroth rearrangement was completely suppressed. Furthermore, the Dimroth rearrangement of N,1-diaryl-1H-tetrazol-5-amines was rationalized by conducting comprehensive experiments and NMR analysis as well as density functional theory (DFT) calculations of thermodynamic stability of the compounds. It was established that the Dimroth rearrangement is thermodynamically controlled, and the equilibrium of the reaction is determined by the stability of the corresponding isomers. The mechanism was investigated by additional DFT calculations, and the opening of the tetrazole ring was shown to be the rate-determining step. By maneuvering Pd-catalyzed N-arylation and the subsequent Dimroth rearrangement, two more N,1-diaryl-1H-tetrazol-5-amine derivatives were acquired, which otherwise cannot be synthesized by employing the C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Andrea M Nikolić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Jelena Stanić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Matija Zlatar
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Boban And Elković
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Života Selaković
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre, Faculty of Chemistry, Ltd., Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Igor M Opsenica
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| |
Collapse
|
5
|
Affiliation(s)
- Zhixiang Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 354 Fenglin Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 354 Fenglin Lu, Shanghai 200032, China
| |
Collapse
|