1
|
Fei N, Wang Y, Gu Y, Wang Z, Zhu Y, Li Y. Silver-Mediated [2 + 2 + 1] Cyclization of ortho-Propioloylbenzonitriles with Elemental Selenium: Synthesis of 4 H-indeno[1,2- c][1,2]selenazol-4-ones. J Org Chem 2023; 88:13042-13048. [PMID: 37647572 DOI: 10.1021/acs.joc.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An efficient silver-mediated [2 + 2 + 1] cyclization protocol of ortho-propioloylbenzonitriles with elemental selenium for the synthesis of 4H-indeno[1,2-c][1,2]selenazol-4-ones has been developed. One C-Se bond, one N-Se bond, and one C-C bond were rapidly constructed in one step. The reaction might proceed via the formation of a highly reactive selenoketene intermediate, followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Nana Fei
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yingge Gu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongkang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
2
|
Dong J, Xu J. Synthesis of 2,3-dihydro-1,4-benzoxathiine derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Minami K, Minakawa M, Uozumi Y. Preparation of Benzothiazoles and Heterocyclic Spiro Compounds Through Cu‐catalyzed S–S Bond Cleavage and C–S Bond Formation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keisuke Minami
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering JAPAN
| | - Maki Minakawa
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering 4-3-16, Jonan 992-8510 Yonezawa JAPAN
| | - Yasuhiro Uozumi
- Institute of Molecular Sciences: Institut des Sciences Moleculaires Complex Catalysis 5-1, Higashiyama, Myodaiji 444-8787 Okazaki JAPAN
| |
Collapse
|
4
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Sundaravelu N, Sangeetha S, Sekar G. Metal-catalyzed C-S bond formation using sulfur surrogates. Org Biomol Chem 2021; 19:1459-1482. [PMID: 33528480 DOI: 10.1039/d0ob02320e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sulfur-containing compounds are present in a wide range of biologically important natural products, drugs, catalysts, and ligands and they have wide applications in material chemistry. Transition metal-catalyzed C-S bond-forming reactions have successfully overcome the obstacles associated with traditional organosulfur compound syntheses such as stoichiometric use of metal-catalysts, catalyst-poisoning and harsh reaction conditions. One of the key demands in metal-catalyzed C-S bond-forming reactions is the use of an appropriate sulfur source due to its odor and availability. The unpleasant odor of many organic sulfur sources might be one of the reasons for the metal-catalyzed C-S bond-forming reactions being less explored compared to other metal-catalyzed C-heteroatom bond-forming reactions. Hence, employing an appropriate sulfur surrogate in the synthesis of organosulfur compounds in metal-catalyzed reactions is still of prime interest for chemists. This review explores the recent advances in C-S bond formation using transition metal-catalyzed cross-coupling reactions and C-H bond functionalization using diverse and commercially available sulfur surrogates. Based on the different transition metal-catalysts, this review has been divided into three major classes namely (1) palladium-catalyzed C-S bond formation, (2) copper-catalyzed C-S bond formation, and (3) other metal-catalyzed C-S bond formation. This review is further arranged based on the different sulfur surrogates. Also, this review provides an insight into the growing opportunities in the construction of complex organosulfur scaffolds covering natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Nallappan Sundaravelu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Subramani Sangeetha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
7
|
Musalov MV, Yakimov VA, Potapov VA, Amosova SV. Synthesis of Functional Dihydro-1,4-benzoxaselenines from Carvacrol Allyl Ether and Selenium Dihalides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nguyen TB. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances NaturellesCNRS UPR 2301Université Paris-SudUniversité Paris-Saclay 1, avenue de la Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
9
|
Recent developments in the synthesis of Se-heterocycles applying elemental selenium (microreview). Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P. Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source. J Org Chem 2019; 84:12237-12245. [PMID: 31480831 DOI: 10.1021/acs.joc.9b02032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel one-pot three-component cascade cyclization strategy for the synthesis of 2-amino-5-acylthiazoles using enaminones, cyanamide, and elemental sulfur has been developed. The reported methods have demonstrated good tolerance of various functional groups. Up to 28 2-amino-5-acylthiazole compounds bearing diverse structural differences were successfully synthesized from easily obtained starting materials with moderate to excellent yields. Our method provides an effective way for the access of valuable and potentially bioactive 2-amino-5-acylthiazole derivatives.
Collapse
Affiliation(s)
- Rong-Geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yong Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Fei Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Hao-Lin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yuan Sun
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Duo-Wen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Ye-Wei Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , People's Republic of China
| |
Collapse
|