1
|
Wang H, Chi X, Zhang X, Zhang L, Liu Q, Zhao Z, Zhang D, Cui H, Liu H. Electromagnetic Mill-Promoted Palladium-Catalyzed Heck-Type Cyclization/Decarboxylative Coupling of ( Z)-1-Iodo-1,6-diene with Propiolic Acids. J Org Chem 2024; 89:5320-5327. [PMID: 38554091 DOI: 10.1021/acs.joc.3c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Electromagnetic mill (EMM)-promoted solid-state cascade Heck-type cyclization/decarboxylative coupling of propiolic acid with (Z)-1-iodo-1,6-diene derivate was demonstrated. The reaction was realized via palladium catalysis, which is solvent-free and involves no additional heating. The collision between ferromagnetic rods could not only be a favor to the mixing between the solid substrates and the catalyst system, but also the thermogenic action could accelerate this transformation. More importantly, this EMM strategy realized multiple bond construction under mechanochemical conditions in one pot.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xiaochen Chi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
- Shandong Xinhua Pharmaceutical Company Limited, No.1, Lutai Road, Zibo 255000, People's Republic of China
| | - Xianqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
2
|
Huang J, Chen Z. The Alkynylative Difunctionalization of Alkenes. Chemistry 2022; 28:e202201519. [DOI: 10.1002/chem.202201519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhi‐Min Chen
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
3
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
4
|
Wang DC, Wu PP, Du PY, Qu GR, Guo HM. Highly Diastereoselective Synthesis of Oxindoles Containing Vicinal Quaternary and Tertiary Stereocenters by a Domino Heck/Decarboxylative Alkynylation Sequence. Org Lett 2022; 24:4212-4217. [PMID: 35666666 DOI: 10.1021/acs.orglett.2c01517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed domino Heck/decarboxylative alkynylation reaction of trisubstituted alkenes or enamines is reported. For two different types of substrates, the current domino reaction employing different solvents and bases led to 3,3-disubstituted oxindoles and hydropyrimidinyl spirooxindoles containing vicinal quaternary and tertiary stereocenters in moderate to good yields, respectively. The general applicability of this method was shown by gram-scale syntheses and diverse transformations of the reaction products. The enantioselective version for this domino process was also studied.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pei-Yu Du
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Dapkekar AB, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent Advances Towards the Synthesis of Dihydrobenzofurans and Dihydroisobenzofurans. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad Chemistry KandiSangareddy District 502 285 Hyderabad INDIA
| |
Collapse
|
6
|
You Q, Liao M, Feng H, Huang J. Microwave-assisted decarboxylative reactions: advanced strategies for sustainable organic synthesis. Org Biomol Chem 2022; 20:8569-8583. [DOI: 10.1039/d2ob01677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in the microwave-assisted decarboxylative reactions of carboxylic acids and their derivatives, including transition-metal-catalyzed and metal-free approaches, are summarized.
Collapse
Affiliation(s)
- Qingqing You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Mingjie Liao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| |
Collapse
|
7
|
Ramesh K, Satyanarayana G. Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Yao T, Wang B, He D, Zhang X, Li X, Fang R. Ligand-Controlled Palladium-Catalyzed Chemoselective Multicomponent Reaction of Olefin-Tethered Aryl Halides, Isocyanides, and Carboxylic Acids: Diversified Synthesis of Imides. Org Lett 2020; 22:6784-6789. [DOI: 10.1021/acs.orglett.0c02297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuanli Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Dan He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiang Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ran Fang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Sultana S, Mech SD, Hussain FL, Pahari P, Borah G, Gogoi PK. Green synthesis of graphene oxide (GO)-anchored Pd/Cu bimetallic nanoparticles using Ocimum sanctum as bio-reductant: an efficient heterogeneous catalyst for the Sonogashira cross-coupling reaction. RSC Adv 2020; 10:23108-23120. [PMID: 35520350 PMCID: PMC9054927 DOI: 10.1039/d0ra01189d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
To explore the synergism between two metal centers we have synthesized graphene oxide (GO) supported Pd/Cu@GO, Pd@GO and Cu@GO nanoparticles through bio-reduction of Pd(NO3)2 and CuSO4·5H2O using Tulsi (Ocimum sanctum) leaf extract as the reducing and stabilizing agent. The graphene oxide (GO) was obtained by oxidation of graphite following a simplified Hummer's method. The as-prepared nanomaterials have been extensively characterized by FTIR, powder X-ray diffraction (PXRD), HRTEM, TEM-EDS, XPS, ICP-AES and BET surface area measurement techniques. The morphological study of Pd/Cu@GO revealed that crystalline bimetallic alloy type particles were dispersed on the GO layer. The activity of Pd@GO, Cu@GO and Pd/Cu@GO as catalysts for the Sonogashira cross-coupling reaction have been investigated and it was found that the Pd/Cu@GO nanostructure showed highly superior catalytic activity over its monometallic counterparts, substantiating the cooperative influence of the two metals. The inter-atom Pd/Cu transmetalation between surfaces was thought to be responsible for its synergistic activity. The catalyst showed higher selectivity towards coupling of aryl iodides with both aliphatic and aryl alkynes resulting in moderate to excellent isolated yield of the desired products (45-99%). The products have been characterized by GC-MS and 1H-NMR spectroscopic techniques and compared with authentic samples. The Pd/Cu@GO catalyst could be easily isolated from the reaction products and reused for up to at least ten successive runs effectively.
Collapse
Affiliation(s)
- Samim Sultana
- Department of Chemistry, Dibrugarh University Dibrugarh-786004 Assam India
| | - Swapna Devi Mech
- Department of Chemistry, Dibrugarh University Dibrugarh-786004 Assam India
| | - Farhaz Liaquat Hussain
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology Jorhat-785006 Assam India
| | - Pallab Pahari
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology Jorhat-785006 Assam India
| | - Geetika Borah
- Department of Chemistry, Dibrugarh University Dibrugarh-786004 Assam India
| | - Pradip K Gogoi
- Department of Chemistry, Dibrugarh University Dibrugarh-786004 Assam India
| |
Collapse
|
10
|
Feng J, Wang S, Feng J, Li Q, Yue J, Yue G, Zou P, Wang G. Mild and efficient synthesis of trans-3-aryl-2-nitro-2,3-dihydrobenzofurans on water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00548g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A protocol to prepare trans-3-aryl-2-nitro-2,3-dihydrobenzofurans has been developed on water. The protocol avoids the use of toxic solvents, tedious work-up procedures, and chromatographic separation.
Collapse
Affiliation(s)
- Juhua Feng
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Siyuan Wang
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Jinxiang Feng
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Qiuju Li
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Junping Yue
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Guizhou Yue
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Ping Zou
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Guangtu Wang
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| |
Collapse
|