1
|
Mansour AM, Arafa MM, Hegazy YS, Sadek MS, Ibrahim HH, Abdullah YS, Shehab OR. A comprehensive survey of cytotoxic active half-sandwich Ir(III) complexes: structural perspective, and mechanism of action. Dalton Trans 2025; 54:4788-4847. [PMID: 39932564 DOI: 10.1039/d4dt03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Iridium(III) complexes, particularly those with piano-stool structures, have drawn a lot of interest recently as possible anticancer drugs. These complexes, which have displayed enhanced cytotoxicity and cytoselectivity compared with clinically approved drugs like cisplatin, oxaliplatin, and carboplatin, hold promising prospects for further anticancer research. Our review aims to explore the complex interplay between cytotoxic properties, cellular uptake efficiency, and intracellular distribution properties of this class of Ir(III) complexes, considering the variation of the coordination site atoms. We provide an overview of the majority of research on mono- and polynunclear half-sandwich Ir(III) complexes with mono- and bidentate ligands, focusing on the impact of altering the leaving group, tethers, substituents on the cyclopentadienyl ring and ligand, spacers, and counter ions on the cytotoxicity and mode of action.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Mohamed M Arafa
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Yara S Hegazy
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Muhammed S Sadek
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Hadeer H Ibrahim
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Yomna S Abdullah
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| |
Collapse
|
2
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
3
|
Paprocka R, Wiese-Szadkowska M, Kosmalski T, Frisch D, Ratajczak M, Modzelewska-Banachiewicz B, Studzińska R. A Review of the Biological Activity of Amidrazone Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15101219. [PMID: 36297331 PMCID: PMC9606871 DOI: 10.3390/ph15101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amidrazones are widely used in chemical synthesis, industry and agriculture. We compiled some of the most important findings on the biological activities of amidrazones described in the years 2010-2022. The data were obtained using the ScienceDirect, Reaxys and Google Scholar search engines with keywords (amidrazone, carbohydrazonamide, carboximidohydrazide, aminoguanidine) and structure strategies. Compounds with significant biological activities were included in the review. The described structures derived from amidrazones include: amidrazone derivatives; aminoguanidine derivatives; complexes obtained using amidrazones as ligands; and some cyclic compounds obtained from amidrazones and/or containing an amidrazone moiety in their structures. This review includes chapters based on compound activities, including: tuberculostatic, antibacterial, antifungal, antiparasitic, antiviral, anti-inflammatory, cytoprotective, and antitumor compounds, as well as furin and acetylocholinesterase inhibitors. Detailed information on the compounds tested in vivo, along the mechanisms of action and toxicity of the selected amidrazone derivatives, are described. We describe examples of compounds that have a chance of becoming drugs due to promising preclinical or clinical research, as well as old drugs with new therapeutic targets (repositioning) which have the potential to be used in the treatment of other diseases. The described examples prove that amidrazone derivatives are a potential source of new therapeutic substances and deserve further research.
Collapse
Affiliation(s)
- Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
- Correspondence:
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Frisch
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Magdalena Ratajczak
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Bożena Modzelewska-Banachiewicz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
New Coordination Compounds Based on a Pyrazine Derivative: Design, Characterization, and Biological Study. Molecules 2022; 27:molecules27113467. [PMID: 35684404 PMCID: PMC9181841 DOI: 10.3390/molecules27113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
New coordination compounds of Mn(II), Fe(III), Co(II), and Ni(II) and the biologically active ligand L (N′-benzylidenepyrazine-2-carbohydrazonamide) were synthesized and characterized by appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG–DTG), infrared spectroscopy (FTIR), and flame-atomic absorption spectrometry (F-AAS). The biological activity of the obtained compounds was then comprehensively investigated. Rational use of these compounds as potential drugs was proven by ADME analysis. All obtained compounds were screened in vitro for antibacterial, antifungal, and anticancer activities. Some of the studied complexes exhibited significantly higher activity than the ligand alone.
Collapse
|
5
|
Farwa U, Singh N, Lee J. Self-assembly of supramolecules containing half-sandwich iridium units. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes.
Collapse
|
8
|
Lapasam A, Mawnai IL, Banothu V, Kaminsky W, Kollipara MR. Ruthenium, rhodium and iridium complexes containing pyrimidine based thienyl pyrazoles: Synthesis and antibacterial studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|