1
|
Substituted N-heterocyclic carbene PEPPSI-type palladium complexes with different N-coordinated ligands: Involvement in the direct C H bond activation of heteroarenes derivatives with aryl bromide and their antimicrobial, anti-inflammatory and antioxidant activities. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
|
3
|
Serdaroğlu G, Şahin N, Şahin-Bölükbaşı S, Üstün E. Novel Ag(I)-NHC complex: synthesis, in vitro cytotoxic activity, molecular docking, and quantum chemical studies. ACTA ACUST UNITED AC 2021; 77:21-36. [PMID: 34225394 DOI: 10.1515/znc-2021-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
The importance of organometallic complexes in cancer biology has attracted attention in recent years. In this paper, we look for the in vitro cytotoxic capability of novel benzimidazole-based N-heterocyclic carbene (NHC) precursor (1) and its Ag(I)-NHC complex (2). For this purpose, these novel Ag(I)-NHC complex (2) was characterized by spectroscopic techniques (1H, 13C{1H} nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FT-IR)). Then, in vitro cytotoxic activities of NHC precursor (1) and Ag(I)-NHC complex (2) were investigated against MCF-7, MDA-MB-231 human breast, DU-145 prostate cancer cells, and L-929 healthy cells using MTT assay for 24, 48, and 72 h incubation times. Ag(I)-NHC complex (2) showed promising in vitro cytotoxic activity against all cell lines for three incubation times, with IC50 values lower than 5 µM. It was also determined that (NHC) precursor (1) were lower in vitro cytotoxic activity than Ag(I)-NHC complex (2) against all cell lines. Selectivity indexes (SIs) of Ag(I)-NHC complex (2) against cancer cells were found higher than 2 for 24 and 48 h incubation time. Besides, the electronic structure and spectroscopic data of the newly synthesized precursor and its Ag-complex have been supported by density functional theory (DFT) calculations and molecular docking analysis. After, the anticancer activity of these compounds has been discussed considering the results of the frontier molecular orbital analysis. We hope that the obtained results from the experiments and computational tools will bring a new perspective to cancer research in terms of supported by quantum chemical calculations.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Math. and Sci. Edu., Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research, and Application Center, İnönü University, 44280 Malatya, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Science and Art, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
4
|
Serdaroğlu G, Şahin-Bölükbaşı S, Barut-Celepci D, Sevinçek R, Şahin N, Gürbüz N, Özdemir İ. Synthesis, in vitro anticancer activities, and quantum chemical investigations on 1,3-bis-(2-methyl-2-propenyl)benzimidazolium chloride and its Ag(I) complex. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820950219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1,3- Bis-(2-methyl-2-propenyl)benzimidazolium chloride and its Ag(I) complex are synthesized and the structures are elucidated using spectroscopies techniques. The molecular and crystal structures of the benzimidazolium salt are confirmed by X-ray crystallography. The molecular geometries of the benzimidazolium and its Ag(I) salt are analyzed using the B3LYP functional with the 6–311+G(d,p)/LANL2DZ basis set. The observed Fourier transform infrared and nuclear magnetic resonance isotropic shifts are compared with the calculated values. Besides, the quantum chemical identifiers, significant intramolecular interactions, and molecular electrostatic potential plots are used to show the tendency/site of the chemical reactivity behavior. The three-dimensional Hirshfeld surfaces and the associated two-dimensional fingerprint plots are applied to obtain an insight into the behavior of the interactions in the crystal. Both compounds are tested for their in vitro anticancer activities against DU-145 and MCF-7 cancer cells and L-929 non-cancer cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Department of Science Education, Faculty of Education, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Duygu Barut-Celepci
- Department of Physics, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Sivas Cumhuriyet University, Sivas, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| |
Collapse
|