1
|
Mechrouk V, Leforestier B, Chen W, Poblador-Bahamonde AI, Maisse-Francois A, Bellemin-Laponnaz S, Achard T. Diastereoselective Synthesis of Sulfoxide-Functionalized N-Heterocyclic Carbene Ruthenium Complexes: An Experimental and Computational Study. Chemistry 2024; 30:e202401390. [PMID: 38862385 DOI: 10.1002/chem.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The synthesis of sulfoxide-functionalized NHC ligand precursors were carried out by direct and mild oxidation from corresponding thioether precursors with high selectivity. Using these salts, a series of cationic [Ru(II)(η6-p-cymene)(NHC-SO)Cl]+ complexes were obtained in excellent yields by the classical Ag2O transmetallation route. NMR analyses suggested a chelate structure for the metal complexes, and X-ray diffractometry studies of complexes 4 b, 4 c, 4dBArF and 4 e unambiguously confirmed the preference for the bidentate (κ2-C,S) coordination mode of the NHC-SO ligands. Interestingly, only one diastereomer, in the form of an enantiomeric pair, was observed both in 1H NMR and in the solid state for the complexes. DFT calculations showed a possible intrinsic energy difference between the two pairs of diastereomer. The calculated energy barriers suggested that inversion of the sulfoxide is only plausible from the higher energy diastereomer together with bulky substituents. Inverting the configuration at the Ru center instead shows a lower and accessible activation barrier to provide the most stable diastereomer through thermodynamic control, consistent with the observation of a single species by 1H NMR as a pair of enantiomers. All these complexes catalyse the β-alkylation of secondary alcohols. Complex 4dPF6 bearing an NHC-functionalised S-Ad group has been further studied with different primary and secondary alcohols as substrates, showing high reactivity and high to moderate β-ol-selectivities.
Collapse
Affiliation(s)
- Victoria Mechrouk
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Baptiste Leforestier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Weighang Chen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | | | - Aline Maisse-Francois
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
- New address: ISM2 (UMR 7313), Aix Marseille University, CNRS, Centrale Marseille, 52 Av. Escadrille Normandie Niemen, 13013, Marseille, France
| |
Collapse
|
2
|
Huang M, Li Y, Lan XB, Liu J, Zhao C, Liu Y, Ke Z. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the N-alkylation of amines with alcohols. Org Biomol Chem 2021; 19:3451-3461. [PMID: 33899900 DOI: 10.1039/d1ob00362c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArF- counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.
Collapse
Affiliation(s)
- Ming Huang
- Clinical Pharmacy of The First Affiliated Hospital, School of clinical pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China. and School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Cunyuan Zhao
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|