1
|
Liang H, Morken JP. Direct Observation of Alkyl Group Transmetalation from Boron to Copper: Impact of Structure Modification and the Critical Role of Copper-Oxygen Preassociation in Stereospecificity. J Am Chem Soc 2025; 147:13126-13130. [PMID: 40202428 DOI: 10.1021/jacs.5c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Mechanistic investigations of prospective intermediates in copper-catalyzed cross-coupling reactions with alkyllithium-activated alkylboronic esters are described. Complexes between (NHC)copper and the borate salts were characterized by X-ray crystallography and NMR, and the rate of intramolecular transmetalation of an alkyl group from boron to copper was measured. Derived activation parameters were correlated with those determined by DFT analysis and give insight into the mechanism of stereospecific transmetalation.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Bühler R, Wolf RM, Gemel C, Stephan J, Deger SN, Kahlal S, Fischer RA, Saillard JY. Cuprophilic Interactions in Polymeric [Cu 10O 2(Mes) 6] n. Inorg Chem 2024. [PMID: 39253905 DOI: 10.1021/acs.inorgchem.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The properties of cuprophilic compounds and the underlying fundamental principles responsible for the Cu(I)···Cu(I) interactions have been the subject of intense research as their diverse structural and physical attributes are being explored. In this light, we performed a new study of the compound [Cu10O2(Mes)6] reported by Haakansson et al. using state of the art experimental and theoretical analysis techniques. Doing this, we found the compound to be a polymer in the solid state, best written as [Cu10O2(Mes)6]n, with unsupported Cu(I)···Cu(I) contacts linking the monomers (2.776 Å). The monomeric unit also exhibits various cuprophilic contacts bridged by mesityl and/or oxo ligands. The compound was analyzed in its solid state, revealing luminescent properties resulting from two distinct fluorescent emissions, as well as in solution, in which its polymeric structure reversibly decomposes. A quantum theory of atoms in molecules (QTAIM) analysis based on density functional theory (DFT) calculations allows to characterize the various Cu(I)···Cu(I) contacts, in which only a few, and not necessarily the shortest, are associated with a bond critical point. Additionally, an energy decomposition analysis of the bonding between monomers indicates that it is dominated by dispersion forces in which the ligands play a dominant role, resulting in bonding energies significantly larger than found in previous DFT investigations based on less bulky models.
Collapse
Affiliation(s)
- Raphael Bühler
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Robert M Wolf
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Christian Gemel
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Johannes Stephan
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Simon N Deger
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France
| | - Roland A Fischer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | | |
Collapse
|
3
|
Lachguar A, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. π-Bonding of Group 11 Metals to a Tantalum Alkylidyne Alkyl Complex Promotes Unusual Tautomerism to Bis-alkylidene and CO 2 to Ketenyl Transformation. J Am Chem Soc 2024; 146:18306-18319. [PMID: 38936814 PMCID: PMC11240581 DOI: 10.1021/jacs.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(μ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(μ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Iker Del Rosal
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon, 5 Rue de la Doua, Villeurbanne 69100, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| |
Collapse
|
4
|
Riethmann M, Föhrenbacher SA, Keiling H, Ignat'ev NV, Finze M, Radius U. Fluoride Abstraction Induced by Tris(pentafluoroethyl)difluorophosphorane: A Convenient Way to Synthesize Cationic N-Heterocyclic Carbene- and Cyclic (Alkyl)(amino)carbene-Ligated Copper Alkyne and Arene Complexes. Inorg Chem 2024; 63:8351-8365. [PMID: 38639397 DOI: 10.1021/acs.inorgchem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We herein report the convenient synthesis of different N-heterocyclic carbene (NHC)- and cyclic (alkyl)(amino)carbene (cAAC)-ligated copper cations using the weakly coordinating tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2F5)3PF3]-). The reaction of the fluorido complexes [(carbene)CuF] (carbene = NHC, cAACMe) 2a-2f and the tris(pentafluoroethyl)difluorophosphorane (C2F5)3PF2 in the presence of alkynes or arenes led to fluoride transfer from Cu to the phosphorane with formation of the cationic transition metal complexes [(carbene)Cu(L)]+ and the weakly coordinating counteranion [(C2F5)3PF3]- (FAP). Using this method, the complexes [(IDipp)Cu(L)]+FAP- (IDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolin-2-ylidene; L = PhC≡CPh, 4d; PhC≡CMe, 5d), [(cAACMe)Cu(L)]+FAP- (cAACMe = 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene; L = PhC≡CPh, 4f; PhC≡CMe, 5f), [(SIDipp)Cu(C6Me6)]+FAP- (6e), (SIDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolidine-2-ylidene), and [(cAACMe)Cu(C6Me6)]+FAP- (6f) have been synthesized and characterized. The complexes [(IDipp)Cu(C6Me6)]+FAP- (6d) and [(cAACMe)Cu(C6Me6)]+FAP- (6f) have been used as catalysts for the copper(I)-catalyzed cycloaddition of benzyl azide to terminal alkynes.
Collapse
Affiliation(s)
- Melanie Riethmann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Steffen A Föhrenbacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Hannes Keiling
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nikolai V Ignat'ev
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Consultant, Merck KGaA, Frankfurter Straße 250, Darmstadt 64293, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
5
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
6
|
Neshat A, Mahdavi A, Yousefshahi MR, Cheraghi M, Eigner V, Kucerakova M, Dusek M, Rezaie F, Kaboudin B. Heteroleptic Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes: Structural Characterization, Computational Analysis, Tyrosinase Inhibitory, and Biological Effects. Inorg Chem 2023; 62:16710-16724. [PMID: 37788161 DOI: 10.1021/acs.inorgchem.3c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Forough Rezaie
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahwaz 6135783151, Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
7
|
Horrer G, Luff MS, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene ligated half-sandwich complexes of chromium(II) and chromium(I). Dalton Trans 2023; 52:13244-13257. [PMID: 37667868 DOI: 10.1039/d3dt02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The synthesis and characterization of a series of Cr(II) N-Heterocyclic Carbene (NHC) complexes of the type [{Cr(NHC)Cl(μ-Cl)}2] and [(Cyp)Cr(NHC)X] (Cyp = η5-C5H5, cyclopentadienyl; η5-C5Me5, pentamethylcyclopentadienyl; X = Cl, η3-C3H5; NHC = IMeMe, IiPrMe, IMes, IDipp) as well as the cyclic (alkyl)(amino)carbene cAACMe ligated complexes [(η5-C5H5)Cr(cAACMe)X] (X = Cl, NPh2), [(η5-C9H7)Cr(cAACMe)Cl] (C9H7 = Ind, indenyl) and [(η5-C13H9)Cr(cAACMe)Cl] (C13H9 = Fl, fluorenyl) are reported. The reduction of [(η5-C5Me5)Cr(IMeMe)Cl] with KC8 in the presence of CO afforded the NHC ligated Cr(I) metallo-radical [(η5-C5Me5)Cr(IMeMe)(CO)2]. Quantum chemical calculations performed on [(η5-C5Me5)Cr(IMeMe)(CO)2] confirm for this complex a predominantly chromium centered radical.
Collapse
Affiliation(s)
- Günther Horrer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Martin S Luff
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Cai S, Tong GSM, Du L, So GKM, Hung FF, Lam TL, Cheng G, Xiao H, Chang X, Xu ZX, Che CM. Gold(I) Multi-Resonance Thermally Activated Delayed Fluorescent Emitters for Highly Efficient Ultrapure-Green Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2022; 61:e202213392. [PMID: 36288083 DOI: 10.1002/anie.202213392] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Acceleration of singlet-triplet intersystem crossings (ISC) is instrumental in bolstering triplet exciton harvesting of multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters. This work describes a simple gold(I) coordination strategy to enhance the spin-orbit coupling of green and blue BN(O)-based MR-TADF emitters, which results in a notable increase in rate constants of the spectroscopically observed ISC process to 3×109 s-1 with nearly unitary ISC quantum yields. Accordingly, the resultant thermally-stable AuI emitters attained large values of delayed fluorescence radiative rate constant up to 1.3×105 /1.7×105 s-1 in THF/PMMA film while preserving narrowband emissions (FWHM=30-37 nm) and high emission quantum yields (ca. 0.9). The vapor-deposited ultrapure-green OLEDs fabricated with these AuI emitters delivered high luminance of up to 2.53×105 cd m-2 as well as external quantum efficiencies of up to 30.3 % with roll-offs as low as 0.8 % and long device lifetimes (LT60 ) of 1210 h at 1000 cd m-2 .
Collapse
Affiliation(s)
- Siyuan Cai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Glenna So Ming Tong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Lili Du
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,School of Life Science, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gary Kwok-Ming So
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Faan-Fung Hung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Tsz-Lung Lam
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Gang Cheng
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
9
|
Dannenberg SG, Seth DM, Finfer EJ, Waterman R. Divergent Mechanistic Pathways for Copper(I) Hydrophosphination Catalysis: Understanding That Allows for Diastereoselective Hydrophosphination of a Tri-substituted Styrene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven G. Dannenberg
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Dennis M. Seth
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Emma J. Finfer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| |
Collapse
|
10
|
Ibni Hashim I, Tzouras NV, Ma X, Bourda L, Van Hecke K, Nolan SP, Cazin CSJ. Improved synthetic routes to N-heterocyclic carbene-metal-diketonato complexes of gold and copper. Dalton Trans 2022; 51:13246-13254. [PMID: 35979743 DOI: 10.1039/d2dt02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our search for simple synthetic routes to N-heterocyclic carbene (NHC)-metal complexes and their derivatives, we herein report an operationally simple, expedient and scalable method to obtain the widely used NHC-metal-diketonates. The reported complexes are synthesized for the first time under mild, aerobic conditions and in excellent yields in a sustainable manner. The protocol is general with regards to the anionic co-ligand and the ancillary carbene ligands. The spectroscopic and crystallographic characterization of the complexes reveal a bidentate binding mode of the diketonate ligand to copper while the gold-congener is C-bound. Finally, the reported Au complex was shown to be an efficient pre-catalyst for the hydrocarboxylation of alkynes.
Collapse
Affiliation(s)
- Ishfaq Ibni Hashim
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Laurens Bourda
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Horrer G, Krummenacher I, Mann S, Braunschweig H, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene complexes of vanadium(III) and vanadium(V). Dalton Trans 2022; 51:11054-11071. [PMID: 35796195 DOI: 10.1039/d2dt01250b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
[VCl3(THF)3] offers a convenient entrance point into the chemistry of carbene stabilized V(III) complexes. Herein we report the paramagnetic mono- and biscarbene complexes [VCl3(cAACMe)] 1, [VCl3(cAACMe)(THF)] 1(thf), [VCl3(IMes)] 2, [{VCl2(IiPrMe)(μ-Cl)}2] 3, [VCl3(IDipp)] 4, [VCl3(SIDipp)] 5, [VCl3(SIDipp)(THF)] 5(thf), [VCl3(ItBu)] 6, [VCl3(cAACMe)2] 7 and [VCl3(IiPrMe)2] 8. Reaction of 1 with MesMgCl, MesLi and LiNPh2 afforded the complexes [VCl2(Mes)(cAACMe)] 9, [cAACMeH]+[VCl2Mes2]-10 and [VCl2(NPh2)(cAACMe)] 11. The V(V) complexes [V(O)Cl3(IDipp)] 12 and [V(O)Cl3(SIDipp)] 13 were selectively prepared from oxygen oxidation of 4 and 5. [V(O)Cl3(IDipp)] 12 and [V(O)Cl3(IMes)] react with isocyanates to yield the NHC-ligated imido complexes [V(N-p-CH3C6H4)Cl3(IDipp)] 14, [V(N-p-FC6H4)Cl3(IDipp)] 15, [V(N-p-CH3C6H4)Cl3(SIDipp)] 16, [V(N-p-FC6H4)Cl3(SIDipp)] 17, [V(N-p-CH3C6H4)Cl3(IMes)] 18 and [V(N-p-FC6H4)Cl3(IMes)] 19.
Collapse
Affiliation(s)
- Günther Horrer
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sophie Mann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Rajalakshmi C, Krishnan A, Saranya S, Anilkumar G, Thomas VI. A detailed theoretical investigation to unravel the molecular mechanism of the ligand-free copper-catalyzed Suzuki cross-coupling reaction. Org Biomol Chem 2022; 20:4539-4552. [PMID: 35388388 DOI: 10.1039/d2ob00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Suzuki-Miyaura coupling (SMC) represents a very efficacious method for constructing C-C bonds in organic synthesis. The ligand-free variants of SMC have been grabbing attention these days. Despite this momentousness, the mechanistic details of the ligand-free variants are scant in the literature. Herein, we have carried out a detailed mechanistic investigation into the ligand-free Cu-catalyzed SMC of unsaturated organic halides with aryl boronic acid with the aid of density functional theory (DFT) calculations employing the conductor-like polarizable continuum model (CPCM) method. The present study elucidates that in the absence of ancillary ligands on the metal, the substrates, base, and solvent molecules could act as pseudo-ancillary ligands to facilitate the cross-coupling reaction. The investigation further revealed that unsaturated halides like alkynyl halides/vinyl halides could act as good ancillary ligands for copper by forming a Cu-π intermediate and promoting a facile transmetalation process. However, regarding the oxidative addition and reductive elimination steps, a concerted pathway is observed contrary to Pd catalyzed Suzuki coupling, owing to the instability of Cu(III) species and the favourability of Csp2-Csp bond formation. In the whole set of mechanisms explored, oxidative addition/oxidative nucleophilic substitution was the rate-determining step in all the cases. A thermodynamically stable π-coordinated intermediate species where the substrate and base molecule are coordinated to the metal center is identified as the rate-determining species for the ligand-free Suzuki cross-coupling reaction. The presence of the aforesaid intermediate increases the energy span and consequently the activation barrier for the rate-determining step. This study unveiled a theoretical rationale for the high-temperature requirement in the ligand-free Cu-catalyzed SMC reaction.
Collapse
Affiliation(s)
- C Rajalakshmi
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Anandhu Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| | - Vibin Ipe Thomas
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| |
Collapse
|
13
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ponce-de-León J, Marcos-Ayuso G, Casares JA, Espinet P. Pd/Cu bimetallic catalysis to access highly fluorinated biaryls from aryl halides and fluorinated arenes. Chem Commun (Camb) 2022; 58:3146-3149. [PMID: 35174831 DOI: 10.1039/d2cc00141a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Pd/Cu bimetallic cross-coupling catalysis of fluoroaryl halides and fluoroarenes is reported. In situ generation of the Cu nucleophile by rate determining C-H activation of highly fluorinated aryls (≥4 F atoms) leads to high cross-coupling selectivity with little formation of homocoupling products.
Collapse
Affiliation(s)
- Jaime Ponce-de-León
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Guillermo Marcos-Ayuso
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Juan A Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| |
Collapse
|
15
|
Ibni Hashim I, Scattolin T, Tzouras NV, Bourda L, Van Hecke K, Ritacco I, Caporaso L, Cavallo L, Nolan SP, Cazin CSJ. Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC = N-heterocyclic carbene). Dalton Trans 2021; 51:231-240. [PMID: 34881762 DOI: 10.1039/d1dt03710b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic access to monomeric copper-alkynyl and copper-thiolato complexes of the type [(NHC)Cu(R)] (R = alkynyl or thiolato) using a weak base approach is reported. All reported reactions proceed under mild conditions in air and in environmentally acceptable solvents. The novel complexes are fully characterized and single crystal X-ray analyses unambiguously establish the atom connectivity in these mononuclear complexes. The importance of the supporting NHC ligand's steric properties in stabilizing mononuclear complexes is discussed.
Collapse
Affiliation(s)
- Ishfaq Ibni Hashim
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Laurens Bourda
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia, University of Salerno, Fisciano, 84048, Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, University of Salerno, Fisciano, 84048, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 96500, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Huang M, Tang M, Hu J, Westcott SA, Radius U, Marder TB. Cu-mediated vs. Cu-free selective borylation of aryl alkyl sulfones. Chem Commun (Camb) 2021; 58:395-398. [PMID: 34901977 DOI: 10.1039/d1cc06144e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Cu-catalysed borylation of aryl alkyl sulfones was developed for the high yield synthesis of versatile arylboronic esters using a readily prepared NHC-Cu catalyst. In addition, the selective cleavage of either alkyl(C)-sulfonyl or aryl(C)-sulfonyl bonds of a cyclic sulfone via Cu-free or Cu-mediated processes generates the corresponding sulfinate salts, which can be further derivatised to provide sulfonyl-containing boronate esters, such as sulfones and sulfonyl fluorides.
Collapse
Affiliation(s)
- Mingming Huang
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiefeng Hu
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Stephen A Westcott
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
17
|
Föhrenbacher SA, Zeh V, Krahfuss MJ, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane and
N
‐Heterocyclic Carbenes: Adduct Formation and Frustrated
Lewis
Pair Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vivien Zeh
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Consultant Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | - Maik Finze
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
18
|
Föhrenbacher SA, Krahfuss MJ, Zapf L, Friedrich A, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane: A Versatile Fluoride Acceptor for Transition Metal Chemistry. Chemistry 2021; 27:3504-3516. [PMID: 33241855 PMCID: PMC7898530 DOI: 10.1002/chem.202004885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Fluoride abstraction from different types of transition metal fluoride complexes [Ln MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C2 F5 )3 PF2 to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2 F5 )3 PF3 ]- ) is reported. (C2 F5 )3 PF2 reacted with trans-[Ni(iPr2 Im)2 (ArF )F] (iPr2 Im=1,3-diisopropylimidazolin-2-ylidene; ArF =C6 F5 , 1 a; 4-CF3 -C6 F4 , 1 b; 4-C6 F5 -C6 F4 , 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr2 Im)2 (solv)(ArF )]FAP (2 a-c[solv]; solv=Et2 O, CH2 Cl2 , THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh3 , solvent coordination was suppressed and the complexes trans-[Ni(iPr2 Im)2 (PPh3 )(C6 F5 )]FAP (trans-2 a[PPh3 ]) and cis-[Ni(iPr2 Im)2 (Dipp2 Im)(C6 F5 )]FAP (cis-2 a[Dipp2 Im]) (Dipp2 Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp2 Im)CuF] (3) in CH2 Cl2 or 1,2-difluorobenzene led to the isolation of [{(Dipp2 Im)Cu}2 ]2+ 2 FAP- (4). Subsequent reaction of 4 with PPh3 and different carbenes resulted in the complexes [(Dipp2 Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6 Me6 , fluoride transfer afforded [(Dipp2 Im)Cu(C6 Me6 )]FAP (5 f), which serves as a source of [(Dipp2 Im)Cu)]+ . Fluoride abstraction of [Cp2 TiF2 ] (7) resulted in the formation of dinuclear [FCp2 Ti(μ-F)TiCp2 F]FAP (8) (Cp=η5 -C5 H5 ) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.
Collapse
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mirjam J. Krahfuss
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ludwig Zapf
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- ConsultantMerck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Maik Finze
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|