1
|
Zhu B, Liu K, Luo L, Zhang Z, Xiao Y, Sun M, Jie S, Wang WJ, Hu J, Shi S, Wang Q, Li BG, Liu P. Covalent Organic Framework-Supported Metallocene for Ethylene Polymerization. Chemistry 2023; 29:e202300913. [PMID: 37341127 DOI: 10.1002/chem.202300913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
The loading of homogeneous catalysts with support can dramatically improve their performance in olefin polymerization. However, the challenge lies in the development of supported catalysts with well-defined pore structures and good compatibility to achieve high catalytic activity and product performance. Herein, we report the use of an emergent class of porous material-covalent organic framework material (COF) as a carrier to support metallocene catalyst-Cp2 ZrCl2 for ethylene polymerization. The COF-supported catalyst demonstrates a higher catalytic activity of 31.1×106 g mol-1 h-1 at 140 °C, compared with 11.2×106 g mol-1 h-1 for the homogenous one. The resulting polyethylene (PE) products possess higher weight-average molecular weight (Mw ) and narrower molecular weight distribution (Ð) after COF supporting, that is, Mw increases from 160 to 308 kDa and Ð drops from 3.3 to 2.2. The melting point (Tm ) is also increased by up to 5.2 °C. Moreover, the PE product possesses a characteristic filamentous microstructure and demonstrates an increased tensile strength from 19.0 to 30.7 MPa and elongation at break from 350 to 1400 % after catalyst loading. We believe that the use of COF carriers will facilitate the future development of supported catalysts for highly efficient olefin polymerization and high-performance polyolefins.
Collapse
Affiliation(s)
- Bangban Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kan Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqiong Luo
- National-Certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou, 510663, P. R. China
| | - Ziyang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Yangke Xiao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghao Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Jijiang Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengbin Shi
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Qingyue Wang
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University - Quzhou, 99 Zheda Rd, Quzhou, 324000, P. R. China
| |
Collapse
|
2
|
Zhao X, Hou Y, Ye L, Zong K, An Q, Liu B, Yang M. Synthesis of α-Diimine Complex Enabling Rapidly Covalent Attachment to Silica Supports and Application of Homo-/Heterogeneous Catalysts in Ethylene Polymerization. Int J Mol Sci 2023; 24:13645. [PMID: 37686453 PMCID: PMC10487567 DOI: 10.3390/ijms241713645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
For covalent attachment-supported α-diimine catalysts, on the basis of ensuring the thermal stability and activity of the catalysts, the important problem is that the active group on the catalyst can quickly react with the support, anchoring it firmly on the support, shortening the loading time, reducing the negative impact of the support on the active centers, and further improving the polymer morphology, which makes them suitable for use in industrial polymerization temperatures. Herein, we synthesized a α-diimine nickel(II) catalyst bearing four hydroxyl substituents. The hydroxyl substituents enable the catalyst to be immobilized firmly on silica support by covalent linkage in 5-10 min. Compared with the toluene solvent system, the homogeneous catalysts show high activity and thermal stability in hexane solvent at the same conditions. Compared with homogeneous catalysts, heterogeneous catalysis leads to improvements in catalyst lifetime, polymer morphology control, catalytic activity, and the molecular weight of polyethylene (up to 679 kg/mol). The silica-supported catalysts resulted in higher melting temperatures as well as lower branching densities in polyethylenes. Even at 70 °C, the polyethylene prepared by S-CatA-2 still exhibits dispersed particle morphology, and there is no phenomenon of reactor fouling, which is suitable for industrial polymerization processes.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yanhui Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Linlin Ye
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Kening Zong
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingming An
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Min Yang
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
3
|
Slurry Homopolymerization of Ethylene Using Thermostable α-Diimine Nickel Catalysts Covalently Linked to Silica Supports via Substituents on Acenaphthequinone-Backbone. Polymers (Basel) 2022; 14:polym14173684. [PMID: 36080759 PMCID: PMC9459716 DOI: 10.3390/polym14173684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry polymerizations of ethylene to produce branched polyethylenes. The catalytic activities of these still reached 106 g/molNi·h at 70 °C. The life of the supported catalyst is prolonged, as can be seen from the kinetic profile. The molecular weight of the polyethylene obtained by the 955 silica gel supported catalyst was higher than that obtained by the 2408D silica gel supported catalyst. The melting points of polyethylene obtained by the supported catalysts S-C1-a/b are all above 110 °C. Compared with the homogeneous catalyst, the branching numbers of the polyethylenes obtained by the supported catalysts S-C1-a/b is significantly lower. The polyethylenes obtained by supported catalyst S-C1-a/b at 30-50 °C are free-flowing particles, which is obviously better than the rubber-like cluster polymer obtained from homogeneous catalyst.
Collapse
|