1
|
Alliband KH, Parr T, Jethwa PH, Brameld JM. Active vitamin D increases myogenic differentiation in C2C12 cells via a vitamin D response element on the myogenin promoter. Front Physiol 2024; 14:1322677. [PMID: 38264331 PMCID: PMC10804454 DOI: 10.3389/fphys.2023.1322677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Skeletal muscle development during embryogenesis depends on proliferation of myoblasts followed by differentiation into myotubes/multinucleated myofibers. Vitamin D (VD) has been shown to affect these processes, but there is conflicting evidence within the current literature on the exact nature of these effects due to a lack of time course data. With 20%-40% of pregnant women worldwide being VD deficient, it is crucial that a clearer understanding of the impact of VD on myogenesis is gained. Methods: A detailed 8-day differentiation time course was used where C2C12 cells were differentiated in control media (2% horse serum) or with different concentrations of active VD, 1,25 (OH)2D3 (10-13 M, 10-11 M, 10-9 M or 10-7 M), and measurements were taken at 6 time points. DNA, creatine kinase and protein assays were carried out as well as quantitative PCR to determine expression of Myf5, MyoD, myogenin, MHC I, and MHC neonatal, MHC embryonic, MHC IIa, MHC IIx, and MHC IIb mRNAs. Transfections were carried out using one vector containing the myogenin promoter and another containing the same promoter with a 3 base mutation within a putative vitamin D response element (VDRE) to determine effects of 1,25 (OH)2D3 on myogenin transcription. Finally, a ChIP assay was performed to determine whether the VD receptor (VDR) binds to the putative VDRE. Results: 1,25(OH)2D3 caused an inhibition of proliferation and an increase in differentiation in C2C12 cells. Myf5, myogenin, MHC I, and MHC neonatal, MHC embryonic, MHC IIa, MHC IIx, and MHC IIb expression were all increased by 1,25(OH)2D3. Myotube size was also increased by VD. When the putative VDRE on the myogenin promoter was mutated, the increase in expression by VD was lost. ChIP analysis revealed that the VDR does bind to the putative VDRE on the myogenin promoter. Conclusion: Active VD directly increases myogenin transcription via a functional VDRE on the myogenin promoter, resulting in increased myogenic differentiation, increased expression of both the early and late MHC isoforms, and also increased myotube size. These results highlight the importance of VD status during pregnancy for normal myogenesis to occur, but further in vivo work is needed.
Collapse
Affiliation(s)
| | | | | | - John M. Brameld
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
2
|
Kanno A, Aizawa T, Mori Y, Aizawa T. Different types of hip fragility fractures have different values of 25-hydroxyvitamin D and parathyroid hormone. J Orthop Sci 2024; 29:256-261. [PMID: 36435724 DOI: 10.1016/j.jos.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vitamin D insufficiency/deficiency is related to fragility fracture. In most previous studies, there was no assessment of vitamin D deficiency status separately for hip fracture types. The first aim is to evaluate vitamin D and parathyroid hormone (PTH) status in patients with hip fracture. The second objective is to determine whether there are differences in vitamin D and PTH between the femoral neck fracture and the femoral metaphyseal fracture group. METHODS 62 men and 248 women with fragility hip fractures were enrolled. 25-hydroxyviamin D [25(OH)D] and intact PTH (iPTH) values were evaluated, and femoral neck bone mineral density (BMD) was measured on the uninjured side. Vertebral fractures (VFs) were assessed using radiographs of the thoracic and lumbar spine. We examined the relationships of 25(OH)D value with the number of prevalent VFs, T-score of femoral neck, and iPTH level. These analyses were also performed, neck fracture and trochanteric fracture separately. RESULTS Mean age was 85 years. The mean 25(OH)D was 11.2 (range, 4.0-26.1) ng/ml, whereas the mean iPTH value was 48.9 pg/ml (range, 9-429 pg/ml). The mean number of VFs was 1.5 (range, 0-11), and the mean T-score was -3.3 (range, -5.2 to -0.5). There was a weak correlation between the 25(OH)D value and the number of VFs. There was a weak but significant correlation between 25(OH)D and iPTH values. In the patients with trochanteric fractures, 25(OH)D value was significantly lower and iPTH value was significantly higher than those with neck fractures. There was a significant correlation between the 25(OH)D value and number of the VFs, 25(OH)D, and iPTH values only in trochanteric fractures. CONCLUSIONS Vitamin D deficiency was severe and PTH levels were higher in the trochanteric fractures. Both vitamin D deficiency and high PTH levels were suggested to have association with bone fragility.
Collapse
Affiliation(s)
- Atsuko Kanno
- Department of Orthopaedic Surgery, Japan Community Health Care Organization Sendai South Hospital, Japan; Department of Orthopaedic Surgery, Iwaki City Medical Center, Japan.
| | - Toshitake Aizawa
- Department of Orthopaedic Surgery, Iwaki City Medical Center, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
3
|
Agoncillo M, Yu J, Gunton JE. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: A Systematic Review. Nutrients 2023; 15:4377. [PMID: 37892452 PMCID: PMC10609905 DOI: 10.3390/nu15204377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin D deficiency, prevalent worldwide, is linked to muscle weakness, sarcopenia, and falls. Muscle regeneration is a vital process that allows for skeletal muscle tissue maintenance and repair after injury. PubMed and Web of Science were used to search for studies published prior to May 2023. We assessed eligible studies that discussed the relationship between vitamin D, muscle regeneration in this review. Overall, the literature reports strong associations between vitamin D and skeletal myocyte size, and muscle regeneration. In vitro studies in skeletal muscle cells derived from mice and humans showed vitamin D played a role in regulating myoblast growth, size, and gene expression. Animal studies, primarily in mice, demonstrate vitamin D's positive effects on skeletal muscle function, such as improved grip strength and endurance. These studies encompass vitamin D diet research, genetically modified models, and disease-related mouse models. Relatively few studies looked at muscle function after injury, but these also support a role for vitamin D in muscle recovery. The human studies have also reported that vitamin D deficiency decreases muscle grip strength and gait speed, especially in the elderly population. Finally, human studies reported the benefits of vitamin D supplementation and achieving optimal serum vitamin D levels in muscle recovery after eccentric exercise and surgery. However, there were no benefits in rotator cuff injury studies, suggesting that repair mechanisms for muscle/ligament tears may be less reliant on vitamin D. In summary, vitamin D plays a crucial role in skeletal muscle function, structural integrity, and regeneration, potentially offering therapeutic benefits to patients with musculoskeletal diseases and in post-operative recovery.
Collapse
Affiliation(s)
- Miguel Agoncillo
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney 2145, Australia
| |
Collapse
|
4
|
Zhang H, Ke Z, Dong S, Du Y, Tang W, Chen M, Yu W, Cheng Q. Eldecalcitol prevents muscle loss by suppressing PI3K/AKT/FOXOs pathway in orchiectomized mice. Front Pharmacol 2022; 13:1018480. [PMID: 36386197 PMCID: PMC9650589 DOI: 10.3389/fphar.2022.1018480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Elderly male patients are susceptible to develop osteoporosis and sarcopenia, especially those with fragility fractures, hypogonadism, and prostate cancer with androgen deprivation therapy. However, at present, very few treatments are available for men with sarcopenia. Previous preclinical studies in ovariectomized rats have shown the promising effects of eldecalcitol in ameliorating the bone strength and muscle atrophy. We thus investigated the effects of eldecalcitol on androgen-deficient male mice. Six-week-old male mice underwent orchiectomy (ORX) or sham surgery. Mice were randomly divided into 4 groups (n = 12/per group), including 1) sham mice, 2) ORX group, 3) ORX eldecalcitol 30 ng/kg, and 4) ORX eldecalcitol 50 ng/kg. Eldecalcitol increased bone mass and strength of femur in ORX mice. Eldecalcitol 30 ng/kg dose completely rescued ORX-induced muscle weakness. The RT-qPCR showed that eldecalcitol enhanced the mRNA levels of type I and IIa fibers. The expression levels of MuRF1 and Atrogin-1 of gastrocnemius in the eldecalcitol groups were much lower than that of the ORX group. It is assumed that eldecalcitol potentially acts via PI3K/AKT/FOXOs signaling pathway. These findings provide evidence for evaluating eldecalcitol as an investigational treatment for male patients with sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zheng Ke
- Medical Division, Chugai Pharma China Co., Ltd, Shanghai, China
| | | | - Yanping Du
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Qun Cheng,
| |
Collapse
|
5
|
Mori Y, Aizawa T. Impacts of hydroxyvitamin D deficiency on impaired balance function and muscle weakness in young adults. J Bone Miner Metab 2021; 39:1102. [PMID: 34424414 DOI: 10.1007/s00774-021-01260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
6
|
Alliband KH, Kozhevnikova SV, Parr T, Jethwa PH, Brameld JM. In vitro Effects of Biologically Active Vitamin D on Myogenesis: A Systematic Review. Front Physiol 2021; 12:736708. [PMID: 34566700 PMCID: PMC8458760 DOI: 10.3389/fphys.2021.736708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin D (VD) deficiency is associated with muscle weakness. A reduction in the incidence of falls in the elderly following VD supplementation and identification of the VD receptor within muscle cells suggests a direct effect of VD on muscle, but little is known about the underlying mechanisms. Here we systematically searched the literature to identify effects of active VD [1,25(OH)2D3] on skeletal muscle myogenesis in vitro, with no restriction on year of publication. Eligibility was assessed by strict inclusion/exclusion criteria and agreed by two independent investigators. Twelve relevant pa-pers were identified using four different cell types (C2C12, primary mouse satellite cells, primary chick myoblasts, and primary human myoblasts) and a range of myogenic markers (myoD, myogenin, creatine kinase, myosin heavy chain, and myotube size). A clear inhibitory effect of 1,25(OH)2D3 on proliferation was reported, while the effects on the different stages of differentiation were less consistent probably due to variation in cell type, time points and doses of 1,25(OH)2D3 used. However, myotube size was consistently increased by 1,25(OH)2D3. Overall, the evidence suggests that 1,25(OH)2D3 inhibits proliferation and promotes differentiation of myoblasts, but future studies should use time courses to gain a clearer understanding.
Collapse
Affiliation(s)
- Kathryn H Alliband
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Sofia V Kozhevnikova
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Tim Parr
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Preeti H Jethwa
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - John M Brameld
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
7
|
Saito T, Mori Y, Irei O, Baba K, Nakajo S, Itoi E. Effect of eldecalcitol on muscle function and fall prevention in Japanese postmenopausal women: A randomized controlled trial. J Orthop Sci 2021; 26:173-178. [PMID: 32139267 DOI: 10.1016/j.jos.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUD Exercises and vitamin D interventions have shown to improve muscle function and balance, and prevent falls in postmenopausal healthy women and in patients with osteoporosis. However, the effects of eldecalcitol on these factors remain undetermined. The present open-label, randomized, controlled study aimed to investigate the effects of eldecalcitol treatment in reducing falls in postmenopausal women, and improving muscle function and balance. METHODS The study population included 226 Japanese postmenopausal women with osteoporosis. Patients were randomly divided into two groups on the basis of treatment with or without eldecalcitol (0.75 μg/day). Treatment continued for 6 months. Participants in both groups were instructed to perform back extensor muscle exercise. Isometric back extensor and leg extensor strength, grip power, ten-meter walking speed, timed up and go test and time of single leg standing were measured at baseline and 24 weeks. Patients were asked to record the number of falls during the 24-week period. RESULTS The percentage increase in average bilateral quadriceps muscle strength was significantly higher in the eldecalcitol group compared with the non-eldecalcitol group (right, p = 0.041; left, p = 0.042). In contrast, there were no significant differences in the strength of back muscles and grip power and the parameters of balance and walking abilities between the groups. There was no significant difference in the number of falls between the groups. CONCLUSIONS A 24-week intervention of eldecalcitol improves the strength of the quadriceps muscles in postmenopausal women with osteoporosis. However, eldecalcitol neither improve balance and walking abilities nor reduce the number of falls.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Orthopaedic Surgery, Tohoku Medical Pharmaceutical University Wakabayashi Hospital, Japan.
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan.
| | | | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan.
| | | | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
8
|
Nakamura S, Sato Y, Kobayashi T, Kaneko Y, Ito E, Soma T, Okada H, Miyamoto K, Oya A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Vitamin D protects against immobilization-induced muscle atrophy via neural crest-derived cells in mice. Sci Rep 2020; 10:12242. [PMID: 32699341 PMCID: PMC7376070 DOI: 10.1038/s41598-020-69021-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vitamin D deficiency is a recognized risk factor for sarcopenia development, but mechanisms underlying this outcome are unclear. Here, we show that low vitamin D status worsens immobilization-induced muscle atrophy in mice. Mice globally lacking vitamin D receptor (VDR) exhibited more severe muscle atrophy following limb immobilization than controls. Moreover, immobilization-induced muscle atrophy was worse in neural crest-specific than in skeletal muscle-specific VDR-deficient mice. Tnfα expression was significantly higher in immobilized muscle of VDR-deficient relative to control mice, and was significantly elevated in neural crest-specific but not muscle-specific VDR-deficient mice. Furthermore, muscle atrophy induced by limb immobilization in low vitamin D mice was significantly inhibited in Tnfα-deficient mice. We conclude that vitamin D antagonizes immobilization-induced muscle atrophy via VDR expressed in neural crest-derived cells.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yosuke Kaneko
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Okada
- Department of Orthopedic Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
9
|
Ono Y, Miyakoshi N, Kasukawa Y, Nagasawa H, Tsuchie H, Akagawa M, Nagahata I, Yuasa Y, Sato C, Shimada Y. Effects of eldecalcitol and ibandronate on secondary osteoporosis and muscle wasting in rats with adjuvant-induced arthritis. Osteoporos Sarcopenia 2019; 4:128-133. [PMID: 30775555 PMCID: PMC6372828 DOI: 10.1016/j.afos.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/27/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovium, progressive erosion of the articular cartilage, and joint destruction. RA also causes secondary osteoporosis and muscle wasting. We investigated the effects of ibandronate (IBN), a bisphosphonate; eldecalcitol (ELD), an active vitamin D3 derivative; and combination treatment with both agents on secondary osteoporosis and muscle wasting using adjuvant-induced arthritis rats. Methods Arthritis was induced in 8-week-old male Lewis rats. Rats were randomized into 4 treatment groups and an untreated normal control group: IBN (subcutaneously, once every 2 weeks, 10 μg/kg), ELD (orally, once daily, 30 ng/kg/day), IBN + ELD, vehicle, and control. Paw thickness measurements were performed for evaluation of arthritis. The femur was scanned using dual-energy X-ray absorptiometry. Cross-sectional areas of left tibialis and anterior muscle fibers and the expression of MuRF1, atrogin-1, MyoD, and myogenin in the gastrocnemius muscle were measured to evaluate muscle wasting. Results IBN and/or ELD increased bone mineral density (BMD) in the femur. In addition, there was an additive effect of combination treatment compared with single treatments for BMD. However, IBN and/or ELD did not inhibit muscle wasting in adjuvant-induced arthritis rats. Conclusions Combination treatment with IBN and ELD may be effective for secondary osteoporosis associated with RA. Other treatments are necessary for muscle wasting associated with RA. Studies in humans are needed to confirm these findings.
Collapse
Affiliation(s)
- Yuichi Ono
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Nagasawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Manabu Akagawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Itsuki Nagahata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Yuasa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
10
|
|