1
|
Wu R, Zhu Z, Xiao W, Zou J, Nie Y, Yang Y, Zhao W, You Z, Li Y. Mechanism of chondrocyte injury induced by Benzophenone-3 through modulation of the IL-6/JAK2/STAT3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126064. [PMID: 40090449 DOI: 10.1016/j.envpol.2025.126064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Currently, limited research exists on the relationship between osteoarthritis (OA) and Benzophenone-3 (BP-3). This study aims to explore the potential molecular pathways involved, using both in vivo and in vitro biological experiments. In vivo experiments revealed that exposure to BP-3 leads to cartilage damage in the knee joints of rats, suggesting that BP-3 may be a significant risk factor in the development and progression of osteoarthritis. Proteomic sequencing of knee cartilage tissue revealed alterations in multiple inflammatory pathways in the BP-3 group. In vitro cellular experiments further demonstrated the toxic effects of BP-3 on chondrocytes, including inflammatory changes and increased transcriptional levels of IL-6. Cellular transcriptomics sequencing revealed significant changes in multiple intracellular inflammatory pathways, particularly the JAK-STAT pathway. Additional experiments demonstrated that BP-3 enhances STAT3 phosphorylation, promoting the degradation of extracellular matrix (ECM) proteins. Silence of STAT3 alleviated the impaired effects of BP-3 on chondrocytes. Overall, our data suggest that BP-3 exposure may be a significant risk factor for OA development. This study provides substantial evidence and a comprehensive understanding of the impact of BP-3 on OA development.
Collapse
Affiliation(s)
- Runtao Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zhenyu Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wenfeng Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jiarong Zou
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yaoyao Nie
- Shanghai Jinshan District Central Hospital, Shanghai, 201500, China
| | - Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zhenqiang You
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Chihab S, Khan NM, Eng T, Doan T, Kaiser JM, Drissi H. Kartogenin Enhances Chondrogenic Differentiation of iPSC Derived MSCs (iMSCs) and Improves Outcomes in an Osteochondral Defect Model in Male Rats. J Orthop Res 2025; 43:870-880. [PMID: 39800942 DOI: 10.1002/jor.26040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025]
Abstract
Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair. We hypothesized that treatment of iMSCs with TGFβ3 and KGN would enhance chondrogenic differentiation and that implanting these pellets into a rat OCD model would promote de novo cartilage regeneration and reduce pain behavior. We pellet cultured iMSCs derived from articular chondrocytes and treated with various conditions of TGFβ3 and KGN. We then assessed the in vivo performance of the pellets using a trochlear osteochondral defect in male Lewis rats. Co-treatment of iMSC pellets with TGFβ3 and KGN showed more pronounced chondrogenic differentiation than sequential treatment and exhibited stronger expression of chondrogenic genes. Implantation of the TGFβ3/KGN-treated iMSC pellets into OCD resulted in modest repair, as observed via gross morphology, effectively prevented the onset of joint hyperalgesia, and helped to maintain normal gait out to 12 weeks post-implantation compared to untreated OCD rats. Our study highlights the potential of KGN to enhance iMSC pellet chondrogenesis, offering a scaffold-free, cell-based therapy that could simplify clinical translation and improve outcomes for patients with cartilage injuries.
Collapse
Affiliation(s)
- Samir Chihab
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nazir M Khan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Tracy Eng
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Thanh Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
4
|
Liu Y, Lin R, Fang H, Li L, Zhang M, Lu L, Gao X, Song J, Wei J, Xiao Q, Zhang F, Wu K, Cui L. Sargassum polysaccharide attenuates osteoarthritis in rats and is associated with the up-regulation of the ITGβ1-PI3K-AKT signaling pathway. J Orthop Translat 2024; 47:176-190. [PMID: 39040490 PMCID: PMC11260896 DOI: 10.1016/j.jot.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Osteoarthritis (OA) presents a formidable challenge, characterized by as-yet-unclear mechanical intricacies within cartilage and the dysregulation of bone homeostasis. Our preliminary data revealed the encouraging potential of a Sargassum polysaccharide (SP), in promoting chondrogenesis. The aim of our study is to comprehensively assess the therapeutic effects of SP on OA models and further elucidate its potential mechanism. Methods The protective effects of SP were initially evaluated in an inflammation-induced human chondrocyte (C28) cell model. CCK-8 assays, Alcian blue staining, RT-qPCR and Western blotting were used to verify the chondrogenesis of SP in vitro. To assess the efficacy of SP in vivo, surgically induced medial meniscus destabilization (DMM) OA rats underwent an 8-week SP treatment. The therapeutic effects of SP in OA rats were comprehensively evaluated using X-ray imaging, micro-computed tomography (μ-CT), histopathological analysis, as well as immunohistochemical and immunofluorescent staining. Following these assessments, we delved into the potential signaling pathways of SP in inflammatory chondrocytes utilizing RNA-seq analysis. Validation of these findings was conducted through RT-qPCR and western blotting techniques. Results SP significantly enhance the viability of C28 chondrocytes, and increased the secretion of acidic glycoproteins. Moreover, SP stimulated the expression of chondrogenic genes (Aggrecan, Sox9, Col2a1) and facilitated the synthesis of Collagen II protein in C28 inflammatory chondrocytes. In vivo experiments revealed that SP markedly ameliorated knee joint stenosis, alleviated bone and cartilage injuries, and reduced the histopathological scores in the OA rats. μ-CT analysis confirmed that SP lessened bone impairments in the medial femoral condyle and the subchondral bone of the tibial plateau, significantly improving the microarchitectural parameters of the subchondral bone. Histopathological analyses indicated that SP notably enhanced cartilage quality on the surface of the tibial plateau, leading to increased cartilage thickness and area. Immunohistochemistry staining and immunofluorescence staining corroborated these findings by showing a significant promotion of Collagen II expression in OA joints treated with SP. RNA-seq analysis suggest that SP's effects were mediated through the regulation of the ITGβ1-PI3K-AKT signaling axis, thereby stimulating chondrogenesis. Verification through RT-qPCR and Western blot analyses confirmed that SP significantly upregulated the expression of ITGβ1, p110δ, AKT1, ACAN, and Col2a1. Notably, knock-down of ITGβ1 using siRNA in C28 chondrocytes inhibited the expression of ITGβ1, p110δ, AKT1, and ACAN. However, these inhibitory effects were not completely reversed by supplemental SP intervention. Conclusions In summary, our findings reveal that SP significantly enhances chondrogenesis both in vitro and in vivo, alleviating OA progression both in bone and cartilage. The observed beneficial effects are intricately linked to the activation of the ITGβ1-PI3K-AKT signaling axis. The translational potential of this article Our research marks the first instance unveiling the advantageous effects and underlying mechanisms of SP in OA treatment. With its clinical prospects, SP presents compelling new evidence for the advancement of a next-generation polysaccharide drug for OA therapy.
Collapse
Affiliation(s)
- Yanzhi Liu
- Corresponding author. Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, China.
| | | | | | - Lixian Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jintong Song
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Qixian Xiao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Fucheng Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Kefeng Wu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Tchetina EV, Taskina EA. Studies on postoperative outcome prognostic factors reveal intrinsic nature of osteoarthritis as a systemic disease: Comment on Osteoarthritis and Cartilage 2023;24(1):98-107. Osteoarthritis Cartilage 2024; 32:740-741. [PMID: 38556107 DOI: 10.1016/j.joca.2024.03.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Affiliation(s)
- E V Tchetina
- Department of Immunology and Molecular Biology, Nasonova Research Institute of Rheumatology, Moscow, Russia.
| | - E A Taskina
- Department of Immunology and Molecular Biology, Nasonova Research Institute of Rheumatology, Moscow, Russia; Osteoarthritis Laboratory, Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
6
|
Lv Z, Wang Z, Chen D, Shi D. Advances in osteoarthritis research: From diagnosis, treatment to mechanism studies. J Orthop Translat 2024; 44:A4-A6. [PMID: 38476406 PMCID: PMC10927416 DOI: 10.1016/j.jot.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Affiliation(s)
- Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ziling Wang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|