1
|
Xu Q, Jin L, Wang L, Tang Y, Wu H, Chen Q, Sun L. The role of gonadal hormones in regulating opioid antinociception. Ann Med 2024; 56:2329259. [PMID: 38738380 PMCID: PMC11095291 DOI: 10.1080/07853890.2024.2329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2024] [Indexed: 05/14/2024] Open
Abstract
Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin Jin
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LuYang Wang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - YingYing Tang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qing Chen
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LiHong Sun
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Arbiters of endogenous opioid analgesia: role of CNS estrogenic and glutamatergic systems. Transl Res 2021; 234:31-42. [PMID: 33567346 PMCID: PMC8217383 DOI: 10.1016/j.trsl.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Nociception and opioid antinociception in females are pliable processes, varying qualitatively and quantitatively over the reproductive cycle. Spinal estrogenic signaling via membrane estrogen receptors (mERs), in combination with multiple other signaling molecules [spinal dynorphin, kappa-opioid receptors (KOR), glutamate and metabotropic glutamate receptor 1 (mGluR1)], appears to function as a master coordinator, parsing functionality between pronociception and antinociception. This provides a window into pharmacologically accessing intrinsic opioid analgesic/anti-allodynic systems. In diestrus, membrane estrogen receptor alpha (mERα) signals via mGluR1 to suppress spinal endomorphin 2 (EM2) analgesia. Strikingly, in the absence of exogenous opioids, interfering with this suppression in a chronic pain model elicits opioid anti-allodynia, revealing contributions of endogenous opioid(s). In proestrus, robust spinal EM2 analgesia is manifest but this requires spinal dynorphin/KOR and glutamate-activated mGluR1. Furthermore, spinal mGluR1 blockade in a proestrus chronic pain animal (eliminating spinal EM2 analgesia) exacerbates mechanical allodynia, revealing tempering by endogenous opioid(s). A complex containing mu-opioid receptor, KOR, aromatase, mGluRs, and mERα are foundational to eliciting endogenous opioid anti-allodynia. Aromatase-mERα oligomers are also plentiful, in a central nervous system region-specific fashion. These can be independently regulated and allow estrogens to act intracellularly within the same signaling complex in which they are synthesized, explaining asynchronous relationships between circulating estrogens and central nervous system estrogen functionalities. Observations with EM2 highlight the translational relevance of extensively characterizing exogenous responsiveness to endogenous opioids and the neuronal circuits that mediate them along with the multiplicity of estrogenic systems that concomitantly function in phase and out-of-phase with the reproductive cycle.
Collapse
|
3
|
Scheff NN, Alemu RG, Klares R, Wall IM, Yang SC, Dolan JC, Schmidt BL. Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma. Front Mol Neurosci 2019; 12:217. [PMID: 31607857 PMCID: PMC6756004 DOI: 10.3389/fnmol.2019.00217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 01/25/2023] Open
Abstract
Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G+ immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G+ neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G+ neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G+ neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G+ neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.
Collapse
Affiliation(s)
- Nicole N. Scheff
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Robel G. Alemu
- College of Dentistry, New York University, New York, NY, United States
| | - Richard Klares
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Ian M. Wall
- College of Dentistry, New York University, New York, NY, United States
| | - Stephen C. Yang
- College of Dentistry, New York University, New York, NY, United States
| | - John C. Dolan
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| |
Collapse
|
4
|
Gintzler AR, Storman EM, Liu NJ. Estrogens as arbiters of sex-specific and reproductive cycle-dependent opioid analgesic mechanisms. VITAMINS AND HORMONES 2019; 111:227-246. [PMID: 31421702 PMCID: PMC7136895 DOI: 10.1016/bs.vh.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization of estrogenic signaling in the CNS is exceedingly complex. It is comprised of peripherally and centrally synthesized estrogens, and a plethora of types of estrogen receptor that can localize to both the nucleus and the plasma membrane. Moreover, CNS estrogen receptors can exist independent of aromatase (aka estrogen synthase) as well as oligomerize with it, along with a host of other membrane signaling proteins. This ability of CNS estrogen receptors to either to physically pair or exist separately enables locally produced estrogens to act on multiple spatial levels, with a high degree of gradated regulation and plasticity, signaling either in-phase or out-of phase with circulating estrogens. This complexity explains the numerous contradictory findings regarding sex-dependent pain processing and sexually dimorphic opioid antinociception. This review highlights the increasing awareness that estrogens are major endogenous arbiters of both opioid analgesic actions and the mechanisms used to achieve them. This behooves us to understand, and possibly intercede at, the points of intersection of estrogenic signaling and opioid functionality. Factors that integrate estrogenic actions at subcellular, synaptic, and CNS regional levels are likely to be prime drug targets for novel pharmacotherapies designed to modulate CNS estrogen-dependent opioid functionalities and possibly circumvent the current opioid epidemic.
Collapse
MESH Headings
- Analgesia
- Analgesics, Opioid/pharmacology
- Animals
- Aromatase
- Brain/physiology
- Dynorphins/physiology
- Estrogens/physiology
- Female
- Humans
- Male
- Neurosecretory Systems/physiology
- Nociception/drug effects
- Nociception/physiology
- Receptors, Estrogen/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Reproduction/physiology
- Sex Characteristics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States.
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
5
|
Gintzler AR, Liu NJ, Storman EM, Wessendorf MW. Exploiting endogenous opioids: Lessons learned from endomorphin 2 in the female rat. Peptides 2019; 112:133-138. [PMID: 30557590 PMCID: PMC7173356 DOI: 10.1016/j.peptides.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Effective management of chronic pain is demanded by ethical as well as medical considerations. Although opioid analgesics remain among the most effective pharmacotherapies for ameliorating many types of pain, their use is clouded by concerns regarding their addictive properties, underscored by the current epidemic of prescription opioid abuse and attendant deaths. Medicinal harnessing of endogenous opioid antinociception could provide a strategy for continuing to take advantage of the powerful antinociceptive properties of opioids while avoiding their abuse potential. Based on our studies of endogenous mechanism that suppress and facilitate spinal endomorphin 2 antinociception over the rat reproductive cycle, we identified multiple signaling molecules that could serve as targets for activating endogenous opioid analgesia for chronic pain management in women. Our findings emphasize the need for a precision medicine approach that includes stage of menstrual cycle as an important determinant of drug targets for (activating/harnessing) endogenous opioid antinociceptive systems/ capabilities. Utilization of drugs that harness endogenous opioid antinociception in accordance with varying physiological states represents a novel approach for effective pain management.
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Martin W Wessendorf
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Gintzler AR, Liu NJ. Harnessing endogenous opioids for pain relief: Fantasy vs reality. J Opioid Manag 2019; 16:67-72. [PMID: 32091619 PMCID: PMC8244826 DOI: 10.5055/jom.2020.0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To review evidence demonstrating efficacy and feasibility of harnessing the activity of endogenous opioid analgesic systems for pain management. METHODS The authors sought to summarize a wealth of data that establish proof of concept that the analgesic activity of endogenous opioids can be exploited to clinically benefit from the enormous pain-relieving abilities of these peptides without contributing to the current crisis of death by synthetic opioid overdose. RESULTS There is a plethora of studies demonstrating that not only can endogenous opioids mediate placebo-induced antinociception but they are also active in modulating clinical pain. Earlier studies convincingly demonstrate the effec-tiveness of psychological strategies to coopt endogenous opioid analgesic systems to produce pain relief. The challenge is to define pharmacological targets for activating endogenous opioid analgesia reliably in a clinical setting. Based on insights gleaned from mechanisms underlying the ebb and flow of analgesic responsiveness to the spinal application of endomorphin 2, multiple signaling proteins were identified that activate endogenous spinal opioid analgesia. Notably, this was achieved in the absence of any exogenous synthetic opioid. CONCLUSIONS Utilization of drugs that harness endogenous opioid antinociception in accordance with varying physiological states represents a novel approach for effective pain management while mitigating the present epidemic of death by synthetic opioid overdose.
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
7
|
Packiasabapathy S, Sadhasivam S. Gender, genetics, and analgesia: understanding the differences in response to pain relief. J Pain Res 2018; 11:2729-2739. [PMID: 30519077 PMCID: PMC6235329 DOI: 10.2147/jpr.s94650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic variations and gender contribute significantly to the large interpatient variations in opioid-related serious adverse effects and differences in pain relief with other analgesics. Opioids are the most commonly used analgesics to relieve moderate-to-severe postoperative pain. Narrow therapeutic index and unexplained large interpatient variations in opioid-related serious adverse effects and analgesia negatively affect optimal perioperative outcomes. In surgical, experimental, chronic, and neuropathic pain models, females have been reported to have more pain than males. This review focuses on literature evidence of differences in pain relief due to multiple genetic variations and gender of the patient.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| |
Collapse
|
8
|
Liu NJ, Storman EM, Gintzler AR. Pharmacological Modulation of Endogenous Opioid Activity to Attenuate Neuropathic Pain in Rats. THE JOURNAL OF PAIN 2018; 20:235-243. [PMID: 30366152 DOI: 10.1016/j.jpain.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
We showed previously that spinal metabotropic glutamate receptor 1 (mGluR1) signaling suppresses or facilitates (depending on the stage of estrous cycle) analgesic responsiveness to intrathecal endomorphin 2, a highly mu-opioid receptor-selective endogenous opioid. Spinal endomorphin 2 antinociception is suppressed during diestrus by mGluR1 when it is activated by membrane estrogen receptor alpha (mERα) and is facilitated during proestrus when mGluR1 is activated by glutamate. In the current study, we tested the hypothesis that in female rats subjected to spinal nerve ligation (SNL), the inhibition of spinal estrogen synthesis or blockade of spinal mERα/mGluR1 would be antiallodynic during diestrus, whereas during proestrus, mGluR1 blockade would worsen the mechanical allodynia. As postulated, following SNL, aromatase inhibition or mERα/mGluR1 blockade during diestrus markedly lessened the mechanical allodynia. This was observed only on the paw ipsilateral to SNL and was eliminated by naloxone, implicating endogenous opioid mediation. In contrast, during proestrus, mGluR1 blockade worsened the SNL-induced mechanical allodynia of the ipsilateral paw. Findings suggest menstrual cycle stage-specific drug targets for and the putative clinical utility of harnessing endogenous opioids for chronic pain management in women, as well as the value of, if not the necessity for, considering menstrual cycle stage in clinical trials thereof. PERSPECTIVE: Intrathecal treatments that enhance spinal endomorphin 2 analgesic responsiveness under basal conditions lessen mechanical allodynia in a chronic pain model. Findings provide a foundation for developing drugs that harness endogenous opioid antinociception for chronic pain relief, lessening the need for exogenous opioids and thus prescription opioid abuse.
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York..
| |
Collapse
|
9
|
Estrogens synthesized and acting within a spinal oligomer suppress spinal endomorphin 2 antinociception: ebb and flow over the rat reproductive cycle. Pain 2018; 158:1903-1914. [PMID: 28902684 DOI: 10.1097/j.pain.0000000000000991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The magnitude of antinociception elicited by intrathecal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, varies across the rat estrous cycle. We now report that phasic changes in analgesic responsiveness to spinal EM2 result from plastic interactions within a novel membrane-bound oligomer containing estrogen receptors (mERs), aromatase (aka estrogen synthase), metabotropic glutamate receptor 1 (mGluR1), and MOR. During diestrus, spinal mERs, activated by locally synthesized estrogens, act with mGluR1 to suppress spinal EM2/MOR antinociception. The emergence of robust spinal EM2 antinociception during proestrus results from the loss of mER-mGluR1 suppression, a consequence of altered interactions within the oligomer. The chemical pairing of aromatase with mERs within the oligomer containing MOR and mGluR1 allows estrogens to function as intracellular messengers whose synthesis and actions are confined to the same signaling oligomer. This form of estrogenic signaling, which we term "oligocrine," enables discrete, highly compartmentalized estrogen/mER-mGluR1 signaling to regulate MOR-mediated antinociception induced by EM2. Finally, spinal neurons were observed not only to coexpress MOR, mERα, aromatase, and mGluR1 but also be apposed by EM2 varicosities. This suggests that modulation of spinal analgesic responsiveness to exogenous EM2 likely reflects changes in its endogenous analgesic activity. Analogous suppression of spinal EM2 antinociception in women (eg, around menses, comparable with diestrus in rats) as well as the (pathological) inability to transition out of that suppressed state at other menstrual cycle stages could underlie, at least in part, the much greater prevalence and severity of chronic pain in women than men.
Collapse
|
10
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Plasticity of Signaling by Spinal Estrogen Receptor α, κ-Opioid Receptor, and Metabotropic Glutamate Receptors over the Rat Reproductive Cycle Regulates Spinal Endomorphin 2 Antinociception: Relevance of Endogenous-Biased Agonism. J Neurosci 2017; 37:11181-11191. [PMID: 29025923 DOI: 10.1523/jneurosci.1927-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
We previously showed that intrathecal application of endomorphin 2 [EM2; the highly specific endogenous μ-opioid receptor (MOR) ligand] induces antinociception that varies with stage of the rat estrous cycle: minimal during diestrus and prominent during proestrus. Earlier studies, however, did not identify proestrus-activated signaling strategies that enable spinal EM2 antinociception. We now report that in female rats, increased spinal dynorphin release and κ-opioid receptor (KOR) signaling, as well as the emergence of glutamate-activated metabotropic glutamate receptor 1 (mGluR1) signaling, are critical to the transition from an EM2 nonresponsive state (during diestrus) to an analgesically responsive state (during proestrus). Differential signaling by mGluR1, depending on its activation by membrane estrogen receptor α (mERα; during diestrus) versus glutamate (during proestrus), concomitant with the ebb and flow of spinal dynorphin/KOR signaling, functions as a switch, preventing or promoting, respectively, spinal EM2 antinociception. Importantly, EM2 and glutamate-containing varicosities appose spinal neurons that express MOR along with mGluRs and mERα, suggesting that signaling mechanisms regulating analgesic effectiveness of intrathecally applied EM2 also pertain to endogenous EM2. Regulation of spinal EM2 antinociception by both the nature of the endogenous mGluR1 activator (i.e., endogenous biased agonism at mGluR1) and changes in spinal dynorphin/KOR signaling represent a novel mechanism for modulating analgesic responsiveness to endogenous EM2 (and perhaps other opioids). This points the way for developing noncanonical pharmacological approaches to pain management by harnessing endogenous opioids for pain relief.SIGNIFICANCE STATEMENT The current prescription opioid abuse epidemic underscores the urgency to develop alternative pharmacotherapies for managing pain. We find that the magnitude of spinal endomorphin 2 (EM2) antinociception not only varies with stage of reproductive cycle, but is also differentially regulated during diestrus and proestrus. This finding highlights the need for sex-specific and cycle-specific approaches to pain management. Additionally, our finding that spinal EM2 antinociception in female rats is regulated by both the ebb and flow of spinal dynorphin/κ-opioid receptor signaling over the estrous cycle, as well as the nature of the endogenous mGluR1 activator, could encourage noncanonical pharmacological approaches to pain management, such as harnessing endogenous opioids for pain relief.
Collapse
|
12
|
Coronel MF, Labombarda F, González SL. Neuroactive steroids, nociception and neuropathic pain: A flashback to go forward. Steroids 2016; 110:77-87. [PMID: 27091763 DOI: 10.1016/j.steroids.2016.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
The present review discusses the potential role of neurosteroids/neuroactive steroids in the regulation of nociceptive and neuropathic pain, and recapitulates the current knowledge on the main mechanisms involved in the reduction of pain, especially those occurring at the dorsal horn of the spinal cord, a crucial site for nociceptive processing. We will make special focus on progesterone and its derivative allopregnanolone, which have been shown to exert remarkable actions in order to prevent or reverse the maladaptive changes and pain behaviors that arise after nervous system damage in various experimental neuropathic conditions.
Collapse
Affiliation(s)
- María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Posillico CK, Terasaki LS, Bilbo SD, Schwarz JM. Examination of sex and minocycline treatment on acute morphine-induced analgesia and inflammatory gene expression along the pain pathway in Sprague-Dawley rats. Biol Sex Differ 2015; 6:33. [PMID: 26693004 PMCID: PMC4676821 DOI: 10.1186/s13293-015-0049-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In addition to its classical effects on opioid receptors, morphine can activate glia and stimulate the production of pro-inflammatory immune molecules which in turn counteract the analgesic properties of morphine. We hypothesized that decreased morphine analgesia in females may be the result of exaggerated microglial activation in brain regions critical for analgesia. METHODS Male and female rats were treated with morphine and/or minocycline and morphine analgesia was examined using the hot plate. We also examined the expression of microglial and astrocyte markers in the pain pathway. RESULTS Males treated with minocycline, a microglial inhibitor, exhibited a significant increase in acute morphine analgesia as previously shown; however, morphine analgesia was not affected by minocycline pretreatment in female rats. Minocycline decreased the expression of glial activation markers in the male spinal cord and periaqueductal gray as expected; however, these same molecules were upregulated in the female. CONCLUSIONS These data describe a significant difference between males and females in the behavioral effects following co-administration of morphine and minocycline.
Collapse
Affiliation(s)
- Caitlin K Posillico
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| | - Laurne S Terasaki
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Dr., Durham, NC 27708 USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| |
Collapse
|
14
|
Kumar A, Liu NJ, Madia PA, Gintzler AR. Contribution of Endogenous Spinal Endomorphin 2 to Intrathecal Opioid Antinociception in Rats Is Agonist Dependent and Sexually Dimorphic. THE JOURNAL OF PAIN 2015; 16:1200-10. [PMID: 26342648 DOI: 10.1016/j.jpain.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Interactions between exogenous and endogenous opioids are not commonly investigated as a basis for sexually dimorphic opioid analgesia. We investigated the influence of spinal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, on the spinal antinociception produced by intrathecally administered opioids. Activation of spinal MORs facilitated spinal EM2 release. This effect was sexually dimorphic, occurring in males but not in females. Although activational effects of testosterone were required for opioid facilitation of spinal EM2 release in males, the absence of this facilitation in females did not result from either insufficient levels of testosterone or mitigating effects of estrogens. Strikingly, in males, the contribution of spinal EM2 to the analgesia produced by intrathecally applied MOR agonists depended on their analgesic efficacy relative to that of EM2. Spinal EM2 released by the higher efficacy MOR agonist sufentanil diminished sufentanil's analgesic effect, whereas EM2 released by the lower efficacy morphine had the opposite effect on spinal morphine antinociception. Understanding antithetical contributions of endogenous EM2 to intrathecal opioid antinociception not only enlightens the selection of opioid medications for pain management but also helps to explain variable sex dependence of the antinociception produced by different opioids, facilitating the acceptance of sexually dimorphic antinociception as a basic tenet. PERSPECTIVE The male-specific MOR-coupled enhancement of spinal EM2 release implies a parallel ability to harness endogenous EM2 antinociception. The inferred diminished ability of females to utilize the spinal EM2 antinociceptive system could contribute to their greater frequency and severity of chronic pain syndromes.
Collapse
Affiliation(s)
- Arjun Kumar
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York
| | - Priyanka A Madia
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York.
| |
Collapse
|
15
|
Kosiorek-Witek A, Makulska-Nowak HE. Morphine Analgesia Modification in Normotensive and Hypertensive Female Rats after Repeated Fluoxetine Administration. Basic Clin Pharmacol Toxicol 2015; 118:45-52. [DOI: 10.1111/bcpt.12438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
|
16
|
Kumar A, Storman EM, Liu NJ, Gintzler AR. Estrogens Suppress Spinal Endomorphin 2 Release in Female Rats in Phase with the Estrous Cycle. Neuroendocrinology 2015; 102:33-43. [PMID: 25925013 PMCID: PMC4575620 DOI: 10.1159/000430817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS Male and female rats differ in their ability to utilize spinal endomorphin 2 (EM2; the predominant mu-opioid receptor ligand in spinal cord) and in the mechanisms that underlie spinal EM2 analgesic responsiveness. We investigated the relevance of spinal estrogen receptors (ERs) to the in vivo regulation of spinal EM2 release. METHODS ER antagonists were administered directly to the lumbosacral spinal cord of male and female rats, intrathecal perfusate was collected, and resulting changes in EM2 release were quantified using a plate-based radioimmunoassay. RESULTS Intrathecal application of an antagonist of either estrogen receptor-α (ERα) or the ER GPR30 failed to alter spinal EM2 release. Strikingly, however, the concomitant blockade of ERα and GPR30 enhanced spinal EM2 release. This effect was sexually dimorphic, being absent in males. Furthermore, the magnitude of the enhancement of spinal EM2 release in females was dependent upon estrous cycle stage, suggesting a relationship with circulating levels of 17β-estradiol. The rapid onset of enhanced EM2 release following intrathecal application of ERα/GPR30 antagonists (within 30-40 min) suggests mediation via ERs in the plasma membrane, not the nucleus. Notably, both ovarian and spinally synthesized estrogens are essential for membrane ER regulation of spinal EM2 release. CONCLUSION These findings underscore the importance of estrogens for the regulation of spinal EM2 activity and, by extension, endogenous spinal EM2 antinociception in females. Components of the spinal estrogenic mechanism(s) that suppress EM2 release could represent novel drug targets for improving utilization of endogenous spinal EM2, and thereby pain management in women.
Collapse
Affiliation(s)
- Arjun Kumar
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, N.Y., USA
| | | | | | | |
Collapse
|
17
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Loyd DR, Murphy AZ. The neuroanatomy of sexual dimorphism in opioid analgesia. Exp Neurol 2014; 259:57-63. [PMID: 24731947 DOI: 10.1016/j.expneurol.2014.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
The influence of sex has been neglected in clinical studies on pain and analgesia, with the vast majority of research conducted exclusively in males. However, both preclinical and clinical studies indicate that males and females differ in both the anatomical and physiological composition of central nervous system circuits that are involved in pain processing and analgesia. These differences influence not only the response to noxious stimuli, but also the ability of pharmacological agents to modify this response. Morphine is the most widely prescribed opiate for the alleviation of persistent pain in the clinic; however, it is becoming increasingly clear that morphine is less potent in women compared to men. This review highlights recent research identifying neuroanatomical and physiological dimorphisms underlying sex differences in pain and opioid analgesia, focusing on the endogenous descending pain modulatory circuit.
Collapse
Affiliation(s)
- Dayna R Loyd
- Pain Management Research Area, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|