1
|
Tao Y, Pan Q, Cai T, Lu ZH, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies novel genetic variants associated with neck or shoulder pain in the UK biobank (N = 430,193). Pain Rep 2025; 10:e1267. [PMID: 40291381 PMCID: PMC12026381 DOI: 10.1097/pr9.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Neck and shoulder pain are prevalent musculoskeletal disorders that significantly affect the quality of life for a substantial portion of the global population. Studies have shown that women are more susceptible than men. Objective This study aims to discover genetic variants associated with neck or shoulder pain through a genome-wide association study (GWAS), using data from 430,193 participants in the UK Biobank. Methods A genome-wide association study was performed adjusting for age, sex, BMI, and 8 population principal components. Significant and independent genetic variants were replicated by FinnGen. Results The primary GWAS revealed 5 significant genetic loci (including 2 novel) associated with neck or shoulder pain, with the most significant single nucleotide polymorphism (SNP) being rs9889282 (P = 2.63 × 10-12) near CA10 on chromosome 17. Two novel significant associations were detected on chromosomes 18 and 14, with the top SNPs being rs4608411 (P = 8.20 × 10-9) near TCF4 and rs370565192 (P = 3.80 × 10-8) in DCAF5, respectively. Our secondary GWAS identified a single novel genetic locus in SLC24A3 among males and 2 genetic loci (including one novel near LINC02770) among females. In the replication stage, the SLC39A8 locus was weakly supported by the FinnGen cohort. The tissue expression analysis revealed a significant association between brain tissues and neck or shoulder pain. Conclusion In summary, this study has identified novel genetic variants for neck or shoulder pain. Sex-stratified GWAS also suggested that sex played a role in the occurrence of the phenotype.
Collapse
Affiliation(s)
- Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Zen Huat Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Lesley A. Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Blicharz-Futera K, Kamiński M, Grychowska K, Canale V, Zajdel P. Current development in sulfonamide derivatives to enable CNS-drug discovery. Bioorg Chem 2025; 156:108076. [PMID: 39889550 DOI: 10.1016/j.bioorg.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 02/03/2025]
Abstract
The encouraging therapeutic potential of sulfonamide-based derivatives has been unraveled by breakthrough discovery of Paul Ehrlich, who pointed out the possibility of fighting microbes with chemicals. Over the decades, the utility of sulfonamides has expanded beyond antimicrobial agents, revealing their usefulness in many areas of pharmacotherapy, including the treatment of central nervous system (CNS) diseases. Through a detailed analysis of preclinical and clinical data, we identify key sulfonamide-based compounds that have demonstrated significant CNS activity. We also discuss the challenges in the development of sulfonamide derivatives as enzyme/ion channel inhibitors or receptor ligands for CNS applications, describing their mode of action and therapeutic significance. This is followed by the characteristics of pharmacological targets, structure-activity relationships, ADMET properties, efficacy in experimental animal models, and outcomes from clinical trials. Overall, the versatile nature of arylsulfonamides makes them a valuable motif in drug discovery, offering diverse opportunities for the development of novel agents for treating CNS disorders.
Collapse
Affiliation(s)
- Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Michał Kamiński
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Katarzyna Grychowska
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
3
|
Hu Y, Zou H, Zhong Z, Li Q, Zeng Q, Ouyang Q, Zou X, Wang M, Luo Y, Yao D. The Role of Astrocyte-Neuron Lactate Shuttle in Neuropathic Orofacial Pain. J Oral Rehabil 2024; 51:2513-2528. [PMID: 39209792 DOI: 10.1111/joor.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Inhibition of astrocytic energy metabolism alleviates neuropathic pain. OBJECTIVES To explore whether astrocyte-neuron lactate shuttle (ANLS) played any role in neuropathic orofacial pain. METHODS Rats with partial transection of the right infraorbital nerve (p-IONX) or sham operation were intrathecally injected with acetazolamide (a carbonic anhydrase inhibitor), bithionol (a soluble adenylyl cyclase inhibitor), α-cyano-4-hydroxycinnamic acid [α-CHCA, a monocarboxylate transporter (MCT) inhibitor] or vehicle once a day from postoperative day 1-14. The facial mechanical thresholds were tested on preoperative day 1 and 2 and postoperative days 1, 3, 5, 7, 10 and 14, expression of glucose transporters (GLUTs) and MCTs in the trigeminal subnucleus caudalis (Vc) were examined on the postoperative day 3 and neuronal activities in the Vc were examined in the p-IONX rats on postoperative days 3-5. RESULTS Compared with the sham group, the mechanical thresholds in the p-IONX group were significantly reduced at postoperative days 1-7, and the number of astrocytes expressing GLUT1 and MCT1/4, and neurons expressing MCT2 was significantly increased on postoperative day 3. In the p-IONX groups, neurons in the Vc were sensitised, and acetazolamide, bithionol and α-CHCA reversed the central sensitisation, significantly increased the mechanical thresholds at postoperative days 1-7 and decreased the number of astrocytes expressing GLUT1 and MCT1/4, and neurons expressing MCT2 at postoperative day 3 compared with those in the vehicle-treated rats. CONCLUSIONS Inhibition of ANLS alleviates p-IONX-related neuronal, behavioural and immunohistochemical changes, which suggests that ANLS plays an important role in trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Yinyin Hu
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Hequn Zou
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Zhijun Zhong
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Qi Li
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Qinghong Zeng
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Qian Ouyang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Xueliang Zou
- Jiangxi Mental Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mengmeng Wang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Yaxing Luo
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Pele R, Marc G, Mogoșan C, Apan A, Ionuț I, Tiperciuc B, Moldovan C, Araniciu C, Oniga I, Pîrnău A, Vlase L, Oniga O. Synthesis, In Vivo Anticonvulsant Activity Evaluation and In Silico Studies of Some Quinazolin-4(3H)-One Derivatives. Molecules 2024; 29:1951. [PMID: 38731442 PMCID: PMC11085150 DOI: 10.3390/molecules29091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.
Collapse
Affiliation(s)
- Raluca Pele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Mogoșan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Anamaria Apan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cătălin Araniciu
- Department of Therapeutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| |
Collapse
|
5
|
Abdoli M, Krasniqi V, Bonardi A, Gütschow M, Supuran CT, Žalubovskis R. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorg Chem 2023; 139:106725. [PMID: 37442043 DOI: 10.1016/j.bioorg.2023.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
A set of novel N-cyano-N-substituted 4-aminobenzenesulfonamide derivatives were synthesized and investigated for their inhibitory activity against four cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, VII and XIII) and two cathepsins (S and B). N-alkyl/benzyl-substituted derivatives were revealed to be very potent inhibitors against brain-associated hCA VII, but inactive against both cathepsins. On the other hand, N-acyl-substituted derivatives displayed significant inhibitory activities against cathepsin S, but only moderate to poor inhibitory potency against hCA VII. Both hCA VII and cathepsin S have recently been validated as therapeutic targets in neuropathic pain. This study provided an excellent starting point for further structural optimization of this class of bifunctional compounds to enhance their inhibitory activity and selectivity against hCA VII and cathepsin S and to achieve new compounds with an attractive dual mechanism of action as anti-neuropathic agents.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy.
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia; Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
6
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Angeli A, Micheli L, Carta F, Ferraroni M, Pirali T, Fernandez Carvajal A, Ferrer Montiel A, Di Cesare Mannelli L, Ghelardini C, Supuran CT. First-in-Class Dual Hybrid Carbonic Anhydrase Inhibitors and Transient Receptor Potential Vanilloid 1 Agonists Revert Oxaliplatin-Induced Neuropathy. J Med Chem 2023; 66:1616-1633. [PMID: 36626645 PMCID: PMC9940855 DOI: 10.1021/acs.jmedchem.2c01911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here, we report for the first time a series of compounds potentially useful for the management of oxaliplatin-induced neuropathy (OINP) able to modulate the human Carbonic Anhydrases (hCAs) as well as the Transient Receptor Potential Vanilloid 1 (TRPV1). All compounds showed effective in vitro inhibition activity toward the main hCAs involved in such a pathology, whereas selected items reported moderate agonism of TRPV1. X-ray crystallographic experiments assessed the binding modes of the two enantiomers (R)-37a and (S)-37b within the hCA II cleft. Although the tails assumed diverse orientations, no appreciable effects were observed for their hCA II affinity. Similarly, the activity of (R)-39a and (S)-39b on TRPV1 was not influenced by the stereocenters. In vivo evaluation of the most promising derivatives (R)-12a, (R)-37a, and the two enantiomers (R)-39a, (S)-39b revealed antihypersensitivity effects in a mouse model of OINP with potent and persistent effect up to 75 min after administration.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy,. Tel.: +39 055
457 3666
| | - Laura Micheli
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department
of Chemistry ″Ugo Schiff″, University of Florence, via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Tracey Pirali
- Dipartimento
Di Scienze del Farmaco, Università
Degli Studi del Piemonte Orientale, 28100 Novara, Italy
| | - Asia Fernandez Carvajal
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche (IDiBE), Universitas
Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer Montiel
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche (IDiBE), Universitas
Miguel Hernández, 03202 Elche, Spain
| | - Lorenzo Di Cesare Mannelli
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Carla Ghelardini
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
9
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Lucarini E, Nocentini A, Bonardi A, Chiaramonte N, Parisio C, Micheli L, Toti A, Ferrara V, Carrino D, Pacini A, Romanelli MN, Supuran CT, Ghelardini C, Di Cesare Mannelli L. Carbonic Anhydrase IV Selective Inhibitors Counteract the Development of Colitis-Associated Visceral Pain in Rats. Cells 2021; 10:2540. [PMID: 34685520 PMCID: PMC8533707 DOI: 10.3390/cells10102540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
Persistent pain affecting patients with inflammatory bowel diseases (IBDs) is still very difficult to treat. Carbonic anhydrase (CA) represents an intriguing pharmacological target considering the anti-hyperalgesic efficacy displayed by CA inhibitors in both inflammatory and neuropathic pain models. The aim of this work was to evaluate the effect of inhibiting CA IV, particularly when expressed in the gut, on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) in rats. Visceral sensitivity was assessed by measuring animals' abdominal responses to colorectal distension. Repeated treatment with the selective CA IV inhibitors AB-118 and NIK-67 effectively counteracted the development of visceral pain induced by DNBS. In addition to pain relief, AB-118 showed a protective effect against colon damage. By contrast, the anti-hyperalgesic activity of NIK-67 was independent of colon healing, suggesting a direct protective effect of NIK-67 on visceral sensitivity. The enzymatic activity and the expression of CA IV resulted significantly increased after DNBS injection. NIK-67 normalised CA IV activity in DNBS animals, while AB-118 was partially effective. None of these compounds influenced CA IV expression through the colon. Although further investigations are needed to study the underlying mechanisms, CA IV inhibitors are promising candidates in the search for therapies to relieve visceral pain in IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| |
Collapse
|
11
|
Lee-Kubli CA, Zhou X, Jolivalt CG, Calcutt NA. Pharmacological Modulation of Rate-Dependent Depression of the Spinal H-Reflex Predicts Therapeutic Efficacy against Painful Diabetic Neuropathy. Diagnostics (Basel) 2021; 11:diagnostics11020283. [PMID: 33670344 PMCID: PMC7917809 DOI: 10.3390/diagnostics11020283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Impaired rate-dependent depression (RDD) of the spinal H-reflex occurs in diabetic rodents and a sub-set of patients with painful diabetic neuropathy. RDD is unaffected in animal models of painful neuropathy associated with peripheral pain mechanisms and diabetic patients with painless neuropathy, suggesting RDD could serve as a biomarker for individuals in whom spinal disinhibition contributes to painful neuropathy and help identify therapies that target impaired spinal inhibitory function. The spinal pharmacology of RDD was investigated in normal rats and rats after 4 and 8 weeks of streptozotocin-induced diabetes. In normal rats, dependence of RDD on spinal GABAergic inhibitory function encompassed both GABAA and GABAB receptor sub-types. The time-dependent emergence of impaired RDD in diabetic rats was preceded by depletion of potassium-chloride co-transporter 2 (KCC2) protein in the dorsal, but not ventral, spinal cord and by dysfunction of GABAA receptor-mediated inhibition. GABAB receptor-mediated spinal inhibition remained functional and initially compensated for loss of GABAA receptor-mediated inhibition. Administration of the GABAB receptor agonist baclofen restored RDD and alleviated indices of neuropathic pain in diabetic rats, as did spinal delivery of the carbonic anhydrase inhibitor acetazolamide. Pharmacological manipulation of RDD can be used to identify potential therapies that act against neuropathic pain arising from spinal disinhibition.
Collapse
|
12
|
D’Ambrosio K, Di Fiore A, Buonanno M, Kumari S, Tiwari M, Supuran CT, Mishra CB, Monti SM, De Simone G. The crystal structures of 2-(4-benzhydrylpiperazin-1-yl)- N-(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II and VII provide insights into selective CA inhibitor development. NEW J CHEM 2021. [DOI: 10.1039/d0nj03544k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Our studies suggest that the acetamide linker and long tails are suitable structural features to design selective CA inhibitors.
Collapse
Affiliation(s)
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR
- Napoli
- Italy
| | | | - Shikha Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- Delhi
- India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- Delhi
- India
| | | | | | | | | |
Collapse
|
13
|
Ur Rehman N, al-Rashida M, Tokhi A, Ahmed Z, Subhan F, Abbas M, Arshid MA, Rauf K. Analgesic and Antiallodynic Effects of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide in a Murine Model of Pain. Drug Des Devel Ther 2020; 14:4511-4518. [PMID: 33149549 PMCID: PMC7602919 DOI: 10.2147/dddt.s269777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Physical, chemical, thermal injuries along with infectious diseases lead to acute pain with associated inflammation, being the primary cause of hospital visits. Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to high morbidity and poor quality of life. OBJECTIVE Earlier multiple sulphonamides have been reported to have an antinociceptive and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS), a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investigated for its potential effects in mice model of acute and diabetic neuropathic pain. METHODS AND RESULTS 4-FBS was given orally (p.o.) one hour before the test and then mice were screened for antinociceptive activity by using the tail immersion test, which showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the possible mechanisms, thermal analgesia of 4-FBS was reversed by the 5HT3 antagonist ondansetron 1mg/kg intraperitoneally (i.p.) and by the µ receptor antagonist naloxone (1 mg/kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin (STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively allodynic in the fourth week, which was evaluated through behavioral parameters like thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes-induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes. CONCLUSION These findings are significant and promising while further studies are warranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | | | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
14
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
15
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
16
|
Nocentini A, Alterio V, Bua S, Micheli L, Esposito D, Buonanno M, Bartolucci G, Osman SM, ALOthman ZA, Cirilli R, Pierini M, Monti SM, Di Cesare Mannelli L, Gratteri P, Ghelardini C, De Simone G, Supuran CT. Phenyl(thio)phosphon(amid)ate Benzenesulfonamides as Potent and Selective Inhibitors of Human Carbonic Anhydrases II and VII Counteract Allodynia in a Mouse Model of Oxaliplatin-Induced Neuropathy. J Med Chem 2020; 63:5185-5200. [PMID: 32364386 PMCID: PMC8007106 DOI: 10.1021/acs.jmedchem.9b02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Human carbonic anhydrase (CA; EC 4.2.1.1) isoforms II and VII are implicated in neuronal excitation, seizures, and neuropathic pain (NP). Their selective inhibition over off-target CAs is expected to produce an anti-NP action devoid of side effects due to promiscuous CA modulation. Here, a drug design strategy based on the observation of (dis)similarities between the target CA active sites was planned with benzenesulfonamide derivatives and, for the first time, a phosphorus-based linker. Potent and selective CA II/VII inhibitors were identified among the synthesized phenyl(thio)phosphon(amid)ates 3-22. X-ray crystallography depicted the binding mode of phosphonic acid 3 to both CAs II and VII. The most promising derivatives, after evaluation of their stability in acidic media, were tested in a mouse model of oxaliplatin-induced neuropathy. The most potent compound racemic mixture was subjected to HPLC enantioseparation, and the identification of the eutomer, the (S)-enantiomer, allowed to halve the dose totally relieving allodynia in mice.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department
of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Alterio
- Istituto
di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Silvia Bua
- Department
of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Laura Micheli
- Department
of NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Davide Esposito
- Istituto
di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Martina Buonanno
- Istituto
di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Gianluca Bartolucci
- Department
of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Sameh M. Osman
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid A. ALOthman
- Chemistry
Department, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roberto Cirilli
- Centro
nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Pierini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Simona Maria Monti
- Istituto
di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lorenzo Di Cesare Mannelli
- Department
of NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Paola Gratteri
- Department
of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Department
of NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Giuseppina De Simone
- Istituto
di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|
18
|
Kalisha Vali Y, Gundla R, Singh OV, Tamboli Y, Di Cesare Manelli L, Ghelardini C, Al-Tamimi AMS, Carta F, Angeli A, Supuran CT. Spirocyclic sulfonamides with carbonic anhydrase inhibitory and anti-neuropathic pain activity. Bioorg Chem 2019; 92:103210. [PMID: 31473472 DOI: 10.1016/j.bioorg.2019.103210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023]
Abstract
A novel series of 4-oxo-spirochromane bearing primary sulfonamide group were synthetized as Carbonic Anhydrase inhibitors (CAIs) and tested for their management of neuropathic pain. Indeed, CAs have been recently validated as novel therapeutic targets in neuropathic pain. All compounds, here reported, showed strong activity against hCA II and hCA VII with KI values in the low or sub-nanomolar range. Two compounds (6d and 6l) showed good neuropathic pain attenuating effects and longer duration than drug reference acetazolamide in an animal model of oxaliplatin induced neuropathy.
Collapse
Affiliation(s)
- Y Kalisha Vali
- Department of Chemistry, School of Technology, GITAM University, Hyderabad 502102, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Technology, GITAM University, Hyderabad 502102, Telangana, India
| | - Om V Singh
- Department of Chemistry, School of Technology, GITAM University, Hyderabad 502102, Telangana, India
| | - Yasinalli Tamboli
- School of Chemical Sciences, SRTM University, Nanded 431606, Maharashtra, India.
| | - Lorenzo Di Cesare Manelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Abdul-Malek S Al-Tamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
19
|
N-aryl-N'-ureido-O-sulfamates: Potent and selective inhibitors of the human Carbonic Anhydrase VII isoform with neuropathic pain relieving properties. Bioorg Chem 2019; 89:103033. [PMID: 31212085 DOI: 10.1016/j.bioorg.2019.103033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Herein we report for the first time an efficient synthetic procedure for the preparation of N-aryl-N'-ureido-O-sulfamates (AUSs) as a new class of Carbonic Anhydrase Inhibitors (CAIs). The compounds were tested for the inhibition of several human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) isoforms. Interesting inhibition activity and high selectivity against CA VII and XII versus CA I and II, with KIs in the low nanomolar range, were observed. Molecular modeling studies allowed us to decipher the structural features underpinning the selective inhibitory profile of AUSs towards isoforms CAs VII and XII. A selection of sulfamates showed promising neuropathic pain modulating effects in an in vivo animal model of oxaliplatin induced pain.
Collapse
|
20
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
21
|
Neuroligin 2 regulates spinal GABAergic plasticity in hyperalgesic priming, a model of the transition from acute to chronic pain. Pain 2017; 157:1314-1324. [PMID: 26859820 DOI: 10.1097/j.pain.0000000000000513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasticity in inhibitory receptors, neurotransmission, and networks is an important mechanism for nociceptive signal amplification in the spinal dorsal horn. We studied potential changes in GABAergic pharmacology and its underlying mechanisms in hyperalgesic priming, a model of the transition from acute to chronic pain. We find that while GABAA agonists and positive allosteric modulators reduce mechanical hypersensitivity to an acute insult, they fail to do so during the maintenance phase of hyperalgesic priming. In contrast, GABAA antagonism promotes antinociception and a reduction in facial grimacing after the transition to a chronic pain state. During the maintenance phase of hyperalgesic priming, we observed increased neuroligin (nlgn) 2 expression in the spinal dorsal horn. This protein increase was associated with an increase in nlgn2A splice variant mRNA, which promotes inhibitory synaptogenesis. Disruption of nlgn2 function with the peptide inhibitor, neurolide 2, produced mechanical hypersensitivity in naive mice but reversed hyperalgesic priming in mice previously exposed to brain-derived neurotrophic factor. Neurolide 2 treatment also reverses the change in polarity in GABAergic pharmacology observed in the maintenance of hyperalgesic priming. We propose that increased nlgn2 expression is associated with hyperalgesic priming where it promotes dysregulation of inhibitory networks. Our observations reveal new mechanisms involved in the spinal maintenance of a pain plasticity and further suggest that disinhibitory mechanisms are central features of neuroplasticity in the spinal dorsal horn.
Collapse
|
22
|
Abstract
INTRODUCTION Neuropathic pain affects up to 8% of the population with few therapeutic options for its management. No specific drugs are approved for its treatment. AREAS COVERED Recent advances in understanding the pathological mechanisms of this syndrome and the biochemical/pharmacological characterization of novel drug targets, evidenced carbonic anhydrase (CA, EC 4.2.1.1) inhibition as a new approach for designing antineuropathic pain agents. Expert commentary: Peripheral nerve injury negatively influences spinal γ-aminobutyric (GABA)-ergic networks via a reduction in the neuron-specific potassium-chloride (K(+)-Cl(-)) cotransporter (KCC2), which leads to neuropathic allodynia. CA inhibitors (CAIs) reduce the bicarbonate-dependent depolarization of GABAA receptors, showing analgesic effects. Novel classes of selective sulfonamide CA II/VII inhibitors showed highly improved efficacy in animal models of neuropathic pain, compared to acetazolamide, offering the basis for the development of specific therapies of this syndrome based on selective CA isoforms inhibition.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Polo Scientifico, NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Sciences , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| |
Collapse
|
23
|
Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain. Pain 2016; 157:1432-1442. [DOI: 10.1097/j.pain.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Lee KY, Prescott SA. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade. Pain 2015; 156:2431-2437. [PMID: 26186265 DOI: 10.1097/j.pain.0000000000000301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. We hypothesized that these distinct disinhibitory mechanisms, despite all causing allodynia, are differentially susceptible to therapeutic intervention. Specifically, we predicted that reducing bicarbonate efflux by blocking carbonic anhydrase with acetazolamide (ACTZ) would counteract disinhibition caused by chloride dysregulation without affecting normal inhibition or disinhibition caused by GABAA/glycine receptor blockade. To test this, responses to innocuous tactile stimulation were recorded in vivo from rat superficial dorsal horn neurons before and after different forms of pharmacological disinhibition and again after application of ACTZ. Blocking GABAA or glycine receptors caused hyperresponsiveness equivalent to that caused by blocking the potassium chloride cotransporter KCC2, but, consistent with our predictions, only disinhibition caused by KCC2 blockade was counteracted by ACTZ. ACTZ did not alter responses of neurons with intact inhibition. As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which specific therapies will be effective.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
25
|
Acetazolamide reduces postoperative pain following laparoscopic inguinal herniorrhaphy. Surg Endosc 2015; 30:2685-9. [PMID: 26487218 DOI: 10.1007/s00464-015-4564-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/12/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Carbonic acid accumulation, which results from CO2 insufflation, can produce visceral and referred pain in the postoperative setting. Acetazolamide inhibits carbonic anhydrase, an enzyme that accelerates carbonic acid formation. We hypothesized that preoperative administration of acetazolamide would decrease postoperative pain in patients undergoing laparoscopic inguinal herniorrhaphy. METHODS A retrospective review was conducted of patients who underwent laparoscopic preperitoneal inguinal herniorrhaphy at the Medical College of Wisconsin between October 2012 and September 2014. Beginning in January 2014, patients began receiving 250 mg of acetazolamide preoperatively; patients prior to that time did not. The visual analog scale (range 0-10) was used to assess both preoperative pain and postoperative pain. RESULTS A total of 66 patients underwent laparoscopic inguinal herniorrhaphy during the study interval. Of these, 22 (33 %) patients received acetazolamide preoperatively, and 44 (67 %) were included as controls. Overall mean pain scores were lower in the acetazolamide group (1.9 ± 1.45 vs 2.9 ± 1.5, p = 0.04). Specifically, patients who received acetazolamide reported lower pain scores immediately after surgery (0.6 ± 1.2 vs 1.9 ± 2.3, p = 0.01) and on post-op day one (2.3 ± 0.9 vs 4.0 ± 2.1, p = 0.04). Total morphine equivalents administered to manage postoperative pain were significantly less for the acetazolamide group (4.3 ± 4.8 mg) when compared to the control group (8.9 ± 8.4 mg), p = 0.04. Perioperative complications did not differ between the groups (p = 0.16). CONCLUSIONS Acetazolamide appears to reduce pain in the immediate postoperative setting. Patients who received acetazolamide had lower pain scores postoperatively and required fewer narcotics for pain management prior to discharge.
Collapse
|
26
|
Affiliation(s)
- Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences
| | - Steven A Prescott
- The Hospital for Sick Children, Program in Neurosciences and Mental Health; University of Toronto, Department of Physiology
| |
Collapse
|
27
|
Carta F, Di Cesare Mannelli L, Pinard M, Ghelardini C, Scozzafava A, McKenna R, Supuran CT. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015; 23:1828-40. [PMID: 25766630 DOI: 10.1016/j.bmc.2015.02.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
A series of benzene sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors which incorporate lipophilic 4-alkoxy- and 4-aryloxy moieties, together with several derivatives of ethoxzolamide and sulfanilamide are reported. These derivatives were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) of which multiple isoforms are known, and some appear to be involved in pain. These sulfonamides showed modest inhibition against the cytosolic isoform CA I, but were generally effective, low nanomolar CA II, VII, IX and XII inhibitors. X-ray crystallographic data for the adduct of several such sulfonamides with CA II allowed us to rationalize the good inhibition data. In a mice model of neuropathic pain induced by oxaliplatin, one of the strong CA II/VII inhibitors reported here induced a long lasting pain relieving effect, a fact never observed earlier. This is the first report of rationally designed sulfonamide CA inhibitors with pain effective modulating effects.
Collapse
Affiliation(s)
- Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmacologia, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Melissa Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Carla Ghelardini
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmacologia, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
28
|
Synaptic Inhibition and Disinhibition in the Spinal Dorsal Horn. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:359-83. [DOI: 10.1016/bs.pmbts.2014.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Zell V, Juif PÉ, Hanesch U, Poisbeau P, Anton F, Darbon P. Corticosterone analgesia is mediated by the spinal production of neuroactive metabolites that enhance GABAergic inhibitory transmission on dorsal horn rat neurons. Eur J Neurosci 2014; 41:390-7. [DOI: 10.1111/ejn.12796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Vivien Zell
- Centre National de la Recherche Scientifique and University of Strasbourg; Institut des Neurosciences Cellulaires et Intégratives; 5 rue Blaise Pascal F-67084 Strasbourg France
- Laboratory of Neurophysiology and Psychobiology; University of Luxembourg; Luxembourg City Luxembourg
| | - Pierre-Éric Juif
- Centre National de la Recherche Scientifique and University of Strasbourg; Institut des Neurosciences Cellulaires et Intégratives; 5 rue Blaise Pascal F-67084 Strasbourg France
| | - Ulrike Hanesch
- Laboratory of Neurophysiology and Psychobiology; University of Luxembourg; Luxembourg City Luxembourg
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg; Institut des Neurosciences Cellulaires et Intégratives; 5 rue Blaise Pascal F-67084 Strasbourg France
| | - Fernand Anton
- Laboratory of Neurophysiology and Psychobiology; University of Luxembourg; Luxembourg City Luxembourg
| | - Pascal Darbon
- Centre National de la Recherche Scientifique and University of Strasbourg; Institut des Neurosciences Cellulaires et Intégratives; 5 rue Blaise Pascal F-67084 Strasbourg France
| |
Collapse
|
30
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|