1
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
2
|
Asgharpour-Masouleh N, Rezayof A, Alijanpour S, Delphi L. Pharmacological activation of mediodorsal thalamic GABA-A receptors modulates morphine/cetirizine-induced changes in the prefrontal cortical GFAP expression in a rat model of neuropathic pain. Behav Brain Res 2023; 438:114213. [PMID: 36372242 DOI: 10.1016/j.bbr.2022.114213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The present study investigated the involvement of mediodorsal thalamic (MD) GABA-A receptors in cetirizine/morphine-induced anti-allodynia using a rat model of neuropathic pain. To assess the importance of the prefrontal cortex (PFC) for chronic pain processing, its expression level changes of glial fibrillary acidic protein (GFAP) were measured following drug treatments. Each animal was subjected to chronic constriction of the sciatic nerve surgery simultaneously with the MD cannulation under stereotaxic surgery. The results showed that the administration of morphine (3-5 mg/kg) or cetirizine (1-3 mg/kg) produced significant analgesia in neuropathic rats. Systemic administration of cetirizine (2.5 and 3 mg/kg) potentiated the analgesic response to a low and intolerance dose of morphine (3 mg/kg). Intra-MD microinjection of muscimol, a selective GABA-A receptor agonist (0.005-0.01 μg/rat), increased the cetirizine/morphine-induced anti-allodynia, while muscimol by itself did not affect neuropathic pain. The neuropathic pain was associated with the increased PFC expression level of GFAP, suggesting the impact of chronic pain on PFC glial management. Interestingly, the anti-allodynia was associated with a decrease in the PFC expression level of GFAP under the drugs' co-administration. Thus, cetirizine has a significant potentiating effect on morphine response in neuropathic pain via interacting with the MD GABA-A receptors. It seems that neuropathic pain affects the prefrontal cortex GFAP signaling pathway. In clinical studies, these findings can be considered to create a combination therapy with low doses of GABA-A receptor agonist plus cetirizine and morphine to manage neuropathic pain.
Collapse
Affiliation(s)
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Mahmoudzade S, Goudarzi S, Mohammad Jafari R, Shafaroodi H, Dehpour AR, Sanatkar M. The N‐methyl‐D‐aspartate receptor antagonist ketamin exerts analgesic effects via modulation of the nitric oxide pathway. Fundam Clin Pharmacol 2022; 36:956-965. [DOI: 10.1111/fcp.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Shamim Mahmoudzade
- Toxicology and Pharmacology Department, Pharmaceutical Sciences Branch Islamic Azad University Tehran Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Hamed Shafaroodi
- Toxicology and Pharmacology Department, Pharmaceutical Sciences Branch Islamic Azad University Tehran Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mehdi Sanatkar
- Anesthesiology and Pain Management Department Farabi Hospital, Tehran University of Medical Science Tehran Iran
| |
Collapse
|
4
|
Semis HS, Kandemir FM, Caglayan C, Kaynar O, Genc A, Arıkan SM. Protective effect of naringin against oxaliplatin-induced peripheral neuropathy in rats: A behavioral and molecular study. J Biochem Mol Toxicol 2022; 36:e23121. [PMID: 35670529 DOI: 10.1002/jbt.23121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022]
Abstract
Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1β, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Halil S Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Aydın Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefik M Arıkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Tang Q, Liu Y, Peng X, Wang B, Luan F, Zeng N. Research Progress in the Pharmacological Activities, Toxicities, and Pharmacokinetics of Sophoridine and Its Derivatives. Drug Des Devel Ther 2022; 16:191-212. [PMID: 35082485 PMCID: PMC8784973 DOI: 10.2147/dddt.s339555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Sophoridine is a natural quinolizidine alkaloid and a bioactive ingredient that can be isolated and identified from certain herbs, including Sophora flavescens Alt, Sophora alopecuroides L, and Sophora viciifolia Hance. In recent years, this quinolizidine alkaloid has gained widespread attention because of its unique structure and minimal side effects. Modern pharmacological investigations have uncovered sophoridine's multiple wide range biological activities, such as anti-cancer, anti-inflammatory, anti-viral, anti-arrhythmia, and analgesic functions, among others. These pharmacological activities and beneficial effects point to sophoridine as a strong potential therapeutic candidate for the treatment of various diseases, including several cancer types, hepatitis B virus, enterovirus 71, coxsackievirus B3, cerebral edema, cancer pain, heart failure, acute myocardial ischemia, arrhythmia, inflammation, acute lung injury, and osteoporosis. The data showed that sophoridine had adverse reactions, including hepatotoxicity and neurotoxicity. Additionally, analyses of sophoridine's safety, bioavailability, and pharmacokinetic parameters in animal models of research have been limited, especially in the clinic, as have been investigations on its structure-activity relationship. In this article, we comprehensively summarize the biological activities, toxicity, and pharmacokinetic characteristics of sophoridine and its derivatives, as currently reported in publications, as we attempt to provide an overall perspective on sophoridine analogs and the prospects of its application clinically.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610083, People's Republic of China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Baojun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| |
Collapse
|
6
|
Fu B, Zhu R. Analgesia effect of lentivirus-siSCN9A infected neurons in vincristine induced neuropathic pain rats. Bioengineered 2021; 12:12498-12508. [PMID: 34927536 PMCID: PMC8810170 DOI: 10.1080/21655979.2021.2008696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 10/26/2022] Open
Abstract
At present, the mechanism of siSCN9A in Vincristine (VCR)-induced neuropathic pain (NP) is still unclear. This study aimed to explore the analgesic mechanism of lentivirus-siSCN9A (LV-siSCN9A) infected neurons against NP. 40 male Sprague-Dawley (SD) rats were divided into a control group (injected with normal saline), a model group (VCR-induced NP model), a LV-SC group (NP model mice were injected with LV-SC-infected dorsal root ganglia (DRG) neuron cells under the microscope), and a LV-siSCN9A group (NP model mice were injected with LV-siSCN9A-infected DRG neuron cells under the microscope, with 10 rats in each group. The changes of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats in different groups were detected by behavior testing, the Nav1.7 changes in each group were detected by immunofluorescence double standard and Western-blot method. It was found that compared with the control group, the MWT and TWL of the rats in model group were significantly decreased (P < 0.05), and the expression levels of Nav1.7 messenger ribonucleic acid (mRNA) and proteins were significantly increased (P < 0.05). Compared with LV-SC group, the MWT and TWL of rats in LV-siSCN9A group were significantly increased (P < 0.05), the expression levels of Nav1.7 mRNA and proteins were significantly decreased (P < 0.05), and the CGRP expression of spinal dorsal horn was significantly decreased. It was concluded that the LV-siSCN9A infected neurons could play an analgesic role by down-regulating Nav1.7 expression induced by VCR in NP model.
Collapse
Affiliation(s)
- Baojun Fu
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People Hospital, Qingyuan, Guangdong, China
| | - Rong Zhu
- Department of Anesthesiology, The Second Xiangya Hospital,Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Ahmadimoghaddam D, Sadeghian R, Ranjbar A, Izadidastenaei Z, Mohammadi S. Antinociceptive activity of Cnicus benedictus L. leaf extract: a mechanistic evaluation. Res Pharm Sci 2020; 15:463-472. [PMID: 33628288 PMCID: PMC7879793 DOI: 10.4103/1735-5362.297849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/04/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cnicus benedictus, a medicinal herb, traditionally had been used for the treatment of stomachache pain. In this study, the possible efficacy of Cnicus benedictus leaf methanolic extract (CBHE) and also cnicin, one of its major constituents, was measured on pain. EXPERIMENTAL APPROACH In this study, pain assessment tests include writhing, tail-flick (TF), and formalin- induced paw licking test (FIPLT) were used. To understand the possible mediated anti-nociceptive mechanism of CBHE, the opioid mechanism(s), and involvement of the L-arginine/ nitric oxide/cGMP/ATP-sensitive potassium channel pathway (LNCaP) were scrutinized. FINDINGS/RESULTS In TF and writhing tests, CBHE (150 and 300 mg/kg, i.p) remarkably exhibited an anti-nociceptive effect compared to that of the control. Furthermore, CBHE (150 and 300 mg/kg, i.p) in comparison with the control showed a noteworthy anti-nociceptive effect (P < 0.01) in the tonic phase of FIPLT. In the writhing test, administration of selective opioid antagonist (naltrindole, nor-binaltorphimine, and naloxonazine) attenuated the anti-nociceptive effect of CBHE (300 mg/kg) in comparison with control. Moreover, pre-treatment with Nω-nitro-L-arginine methyl ester hydrochloride, L-arginine hydrochloride, and glibenclamide significantly blocked the CBHE (300 mg/kg) anti-nociception (P < 0.05) while administration of sodium nitroprusside remarkably potentiated (P < 0.05) the antinociception induced by CBHE in the tonic phase of the FIPLT. Besides, cnicin (30 mg/kg) showed noteworthy anti-nociceptive effects in writhing, TF, and FIPLT paradigms. CONCLUSION AND IMPLICATIONS Taken together, we elucidate that both CBHE and cnicin demonstrated antinociceptive effects in behavioral tests. The possible mechanisms of CBHE antinociception may involve in various neural signaling and modulatory pathways including LNCaP and opioidergic mechanisms.
Collapse
Affiliation(s)
- Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Reihaneh Sadeghian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Zohreh Izadidastenaei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Saeed Mohammadi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| |
Collapse
|
9
|
Effects of selective inhibition of nNOS and iNOS on neuropathic pain in rats. Mol Cell Neurosci 2020; 105:103497. [PMID: 32353527 DOI: 10.1016/j.mcn.2020.103497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
Various animal models have been employed to understand the pathogenic mechanism of neuropathic pain. Nitric oxide (NO) is an important molecule in nociceptive transmission and is involved in neuropathic pain. However, its mechanistic actions remain unclear. The aim of this study was to better understand the involvement of neuronal and inducible isoforms of nitric oxide synthase (nNOS and iNOS) in neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We evaluated pain sensitivity (mechanical withdrawal thresholds using Randall and Selitto, and von Frey tests, and thermal withdrawal thresholds using Hargreaves test) prior to CCI surgery, 14 days post CCI and after intrathecal injections of selective nNOS or iNOS inhibitors. We also evaluated the distribution of NOS isozymes in the spinal cord and dorsal root ganglia (DRG) by immunohistochemistry, synthesis of iNOS and nNOS by Western blot, and NO production using fluorescent probe DAF-2 DA (DA). Our results showed higher number of nNOS and iNOS-positive neurons in the spinal cord and DRG of CCI compared to sham rats, and their reduction in CCI rats after treatment with selective inhibitors compared to non-treated groups. Western blot results also indicated reduced expression of nNOS and iNOS after treatment with selective inhibitors. Furthermore, both inhibitors reduced CCI-evoked mechanical and thermal withdrawal thresholds but only nNOS inhibitor was able to efficiently lower mechanical withdrawal thresholds using von Frey test. In addition, we observed higher NO production in the spinal cord and DRG of injured rats compared to control group. Our study innovatively shows that nNOS may strongly modulate nociceptive transmission in rats with neuropathic pain, while iNOS may partially participate in the development of nociceptive responses. Thus, drugs targeting nNOS for neuropathic pain may represent a potential therapeutic strategy.
Collapse
|