1
|
McLain N, Cavaleri R, Kutch J. Peak alpha frequency differs between chronic back pain and chronic widespread pain. Eur J Pain 2025; 29:e4737. [PMID: 39373167 DOI: 10.1002/ejp.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Low peak alpha frequency (PAF) is an electroencephalography (EEG) outcome associated reliably with high acute pain sensitivity. However, existing research suggests that the relationship between PAF and chronic pain is more variable. This variability could be attributable to chronic pain groups typically being examined as homogenous populations, without consideration being given to potential diagnosis-specific differences. Indeed, while emerging work has compared individuals with chronic pain to healthy controls, no previous studies have examined differences in PAF between diagnoses or across chronic pain subtypes. METHODS To address this gap, we reanalysed a dataset of resting state EEG previously used to demonstrate a lack of difference in PAF between individuals with chronic pain and healthy controls. In this new analysis, we separated patients by diagnosis before comparing PAF across three subgroups: chronic widespread pain (n = 30), chronic back pain (n = 38), and healthy controls (n = 87). RESULTS We replicate the original finding of no significant difference between chronic pain groups and controls, but also find that individuals with widespread pain had significantly higher global average PAF values than those of people with chronic back pain [p = 0.028, β = 0.25 Hz] after controlling for age, sex, and depression. CONCLUSIONS These novel findings reveal PAF values in individuals with chronic pain may be diagnosis-specific and not uniformly shifted from the values of healthy controls. Future studies should account for diagnosis and be cautious with exploring homogenous 'chronic pain' classifications during investigations of PAF. SIGNIFICANCE Our work suggests that, contrary to previous hypotheses, inter-individual differences in PAF reflect diagnosis-specific mechanisms rather than the general presence of chronic pain, and therefore may have important implications for future work regarding individually-tailored pain management strategies.
Collapse
Affiliation(s)
- Natalie McLain
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Rocco Cavaleri
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Jason Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Bonanno M, Papa GA, Calabrò RS. The Neurophysiological Impact of Touch-Based Therapy: Insights and Clinical Benefits. J Integr Neurosci 2024; 23:214. [PMID: 39735966 DOI: 10.31083/j.jin2312214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The evidence on how touch-based therapy acts on the brain activity opens novel cues for the treatment of chronic pain conditions for which no definitive treatment exists. Touch-based therapies, particularly those involving C-tactile (CT)-optimal touch, have gained increasing attention for their potential in modulating pain perception and improving psychological well-being. While previous studies have focused on the biomechanical effects of manual therapy, recent research has shifted towards understanding the neurophysiological mechanisms underlying these interventions. CT-optimal touch, characterized by gentle stroking that activates CT afferents, may be used to reduce pain perception in chronic pain conditions and to enhance psychological well-being. Further research is needed to fully elucidate the neurophysiological mechanisms involved and to establish the therapeutic efficacy of CT-optimal touch in various clinical populations.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| | | | | |
Collapse
|
3
|
Deuel D, Sandgren A, Nelson EO, Cropes M, Deacon A, Houdek T, Abd-Elsayed A. Conservative Management of Occipital Neuralgia Supported by Physical Therapy: A Review of Available Research and Mechanistic Rationale to Guide Treatment. Curr Pain Headache Rep 2024; 28:1321-1331. [PMID: 38958920 DOI: 10.1007/s11916-024-01288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Conservative management is consistently recommended as a first line intervention for occipital neuralgia (ON); however, there is limited clinical research regarding conservative intervention for ON. This lack of research may lead to underutilization or unwarranted variability in conservative treatment. This article provides mechanism-based guidance for conservative management of ON as a component of a multimodal treatment approach, and discusses the role of the physical therapist in the care team. It also highlights opportunities for further research to refine conservative management of this condition. RECENT FINDINGS Published research on conservative interventions specific to ON is limited to very low-quality evidence for the use of TENS. The contemporary shift toward precision pain management emphasizing treatment based on a patient's constellation of clinical features-a phenotype-rather than solely a diagnosis provides more personalized and specifically targeted pain treatment. This paradigm can guide treatment in cases where diagnosis-specific research is lacking and can be used to inform conservative treatment in this case. Various conservative interventions have demonstrated efficacy in treating many of the symptoms and accepted etiologies of ON. Conservative interventions provided by a physical therapist including exercise, manual therapy, posture and biomechanical training, TENS, patient education, and desensitization have mechanistic justification to treat symptoms and causes of ON. Physical therapists have adequate time and skill to provide such progressive and iterative interventions and should be included in a multimodal treatment plan for ON. Further research is required to determine appropriate dosing, sequencing, and progression of conservative treatments.
Collapse
Affiliation(s)
- Daniel Deuel
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Andrew Sandgren
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Evan O Nelson
- Department of Family Medicine and Community Health, School of Medicine and Public Health, Doctor of Physical Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Cropes
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | | | - Tiffany Houdek
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3272, USA.
| |
Collapse
|
4
|
Zhou XC, Wu S, Wang KZ, Chen LH, Hong SW, Tian Y, Hu HJ, Lin J, Wei ZC, Xie YX, Yin ZH, Lv ZZ, Lv LJ. Default mode network and dorsal attentional network connectivity changes as neural markers of spinal manipulative therapy in lumbar disc herniation. Sci Rep 2024; 14:29541. [PMID: 39604454 PMCID: PMC11603340 DOI: 10.1038/s41598-024-81126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Spinal manipulative therapy (SMT) has been shown to significantly alleviate pain in patients with lumbar disc herniation (LDH), with its effects closely associated with brain function modulation. This study investigates the neural biomarkers linked to pain relief efficacy following a complete SMT treatment cycle in LDH patients. A total of 59 LDH patients were randomized into two groups: SMT treatment (Group 1, n = 28) and sham treatment (ST) (Group 2, n = 31). A matched healthy control group (Group 3, n = 28) was also included. Functional magnetic resonance imaging (fMRI) was performed on LDH patients at two time points (TPs)-before (TP1) and after (TP2) treatment-while healthy controls were scanned once. Clinical assessments were conducted using the Visual Analogue Scale (VAS) and the Japanese Orthopaedic Association (JOA) scale. Post-treatment results indicated significant improvements in both VAS and JOA scores for Group 1, while the improvement was limited to VAS scores for Group 2. Graph properties analysis revealed notable differences in brain network connectivity between LDH patients and healthy controls, particularly between the left precentral gyrus (left PreCG) and left inferior frontal gyrus, opercular part (left IFGoperc). Enhanced functional connectivity (FC) was observed in Group 1, notably between the right angular gyrus (right ANG) and the left middle orbital gyrus (left ORBmid), with right ANG showing a significant positive correlation with clinical scores. This study identifies the sensorimotor network-salience network are significantly activated in chronic pain among LDH patients. The default mode network-dorsal attention network may serve as key neural biomarkers for the efficacy of SMT treatment in alleviating pain in LDH.
Collapse
Affiliation(s)
- Xing-Chen Zhou
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kai-Zheng Wang
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Long-Hao Chen
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang-Wei Hong
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hui-Jie Hu
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jia Lin
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zi-Cheng Wei
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yun-Xing Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zi-Hui Yin
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Zhen Lv
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Li-Jiang Lv
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Miller KL, Boylan P, Mullen CR, Randolph ML, Kettner NW, Pohlman KA. Evaluation of chiropractic students' knowledge and attitudes following pain interventions: A randomized educational trial at 2 institutions. THE JOURNAL OF CHIROPRACTIC EDUCATION 2024; 38:106-113. [PMID: 39373022 PMCID: PMC11774290 DOI: 10.7899/jce-23-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/30/2023] [Accepted: 06/27/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE To examine chiropractic students' attitudes regarding knowledge of pain neuroscience, chronic pain, and patient-centered care before and after educational interventions. Secondarily, this study aimed to compare measures of these skills between cohorts at different timepoints throughout training programs. METHODS Using stratified randomization, 281 Year 3 chiropractic students at 2 institutions were allocated into 1 of 3 educational interventions and served as active-control comparison groups: pain neuroscience education, chronic pain education, or patient-centered care. Participants completed validated surveys regarding their experience with the education interventions immediately pre- and post-lecture and 12 weeks after completion. For further comparison, surveys were also completed by 160 Year 1 students and 118 Year 2 students at 1 of the institutions. Independent sample t tests and 1-way analysis of variance were used for data analysis. RESULTS All Year 3 lecture groups showed immediate improvements (pain neuroscience education: 3.99 + 3.09/100, p = .18 [95% CI: 10.10 to -1.77]; chronic pain education: 0.42 + 0.74/7, p = .02 [95% CI: 0.72 to 0.07]; patient-centered care: 0.25 + 0.12/6, p = .05 [95% CI: 0.12-0.51]), but these were not sustained at the 12-week follow-up (pain neuroscience education: -6.25 + 4.36/100, p = .15 [95% CI: 14.93 to -2.42]; chronic pain education: 0.33 + 0.16/7, p = .19 [95% CI, 0.66 to 0.01]; patient-centered care: 0.13 + 0.13/6, p = .30 [95% CI: 0.41 to -0.13]). Compared to active controls, only the patient-centered care group showed an immediate statistically significant difference. CONCLUSIONS While this study found that immediate improvement in targeted competencies is possible with focused interventions, they were not sustained long term.
Collapse
|
6
|
Du HG, Wen Y, Dong JX, Chen S, Jin X, Liu C, Ling DY, Lv LJ. Brain plasticity following lumbar disc herniation treatment with spinal manipulation therapy based on resting-state functional magnetic resonance imaging. Heliyon 2024; 10:e37703. [PMID: 39315226 PMCID: PMC11417269 DOI: 10.1016/j.heliyon.2024.e37703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
As a prevalent spine disorder, Lumbar disc herniation (LDH) has been affecting more than 2 % of the worldwide population and is characterised by uncertain causes and recurring episodes. Studying the brain activity of patients could potentially provide insights into its pathogenesis and significantly enhance therapy. Therefore, we here examined brain function in patients under Spinal Manipulative Therapy (SMT). By analysing regional homogeneity (ReHo) at different frequency bands, we identified the discrepancies in brain activity between LDH patients and healthy people, highlighting the frequency dependence of spontaneous low-frequency oscillations among patients with LDH. Choosing seeds based on the peak ReHo differences helped to elucidate the functional connectivity alterations in the brain regions of LDH. Overall, this study showed that SMT significantly reduced pain, improved dysfunction, and partially rectified aberrant local consistency and functional connection in patients with LDH, not only offering insights into the pathophysiology of LDH from a neurological standpoint, but also providing inspiration for the development of new therapies based on neurobiology.
Collapse
Affiliation(s)
- Hong-Gen Du
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Jun-Xiang Dong
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Shao Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Chen Liu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Dong-Ya Ling
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Li-Jiang Lv
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
- Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
7
|
Tomaiuolo F, Cerritelli F, Delli Pizzi S, Sestieri C, Paolucci T, Chiacchiaretta P, Sensi SL, Ferretti A. Data-driven analysis of whole-brain intrinsic connectivity in patients with chronic low back pain undergoing osteopathic manipulative treatment. Neuroimage Clin 2024; 43:103659. [PMID: 39208480 PMCID: PMC11399693 DOI: 10.1016/j.nicl.2024.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic Low Back Pain (cLBP) poses a significant health challenge, leading to functional disability and reduced quality of life. Osteopathic Manipulative Treatment (OMT) is emerging as a therapeutic option for cLBP, but the brain mechanisms underlying its analgesic effect remain unclear. MATERIALS AND METHODS Thirty cLBP patients were randomly exposed to either four weekly sessions of OMT (N=16) or Sham treatment (N=14). Resting-state Magnetic Resonance Imaging (rs-MRI) scans and pain perception questionnaires were collected before and after treatment. A voxel-wise, rs-fMRI data-driven analysis was conducted to identify changes in the intrinsic functional connectivity across the whole brain that were associated with the OMT. Spearman's correlations were used to test for the association between changes in intrinsic connectivity and individual reports of pain perception. RESULTS Compared to the Sham group, participants who received OMT showed significant alterations in the functional connectivity of several regions belonging to the pain matrix. Specifically, OMT was associated with decreased connectivity of a parietal cluster that includes the somatosensory cortex and an increase of connectivity of the right anterior insula and ventral and dorsal anterolateral prefrontal areas. Crucially, the change in connectivity strength observed in the ventral anterolateral prefrontal cortex, a putative region of the affective-reappraisive layer of the pain matrix, correlates with the reduction in pain perception caused by the OMT. CONCLUSIONS This study offers insights into the brain mechanisms underlying the analgesic effect of OMT. Our findings support a link between OMT-driven functional cortical architecture alterations and improved clinical outcomes.
Collapse
Affiliation(s)
- Federica Tomaiuolo
- University "G. d'Annunzio" of Chieti Pescara - Engineering and Geology Department, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Francesco Cerritelli
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA; Foundation COME Collaboration, Pescara, Italy.
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy.
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Teresa Paolucci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CARES, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Gevers-Montoro C, Romero-Santiago B, Medina-García I, Larranaga-Arzamendi B, Álvarez-Gálovich L, Ortega-De Mues A, Piché M. Reduction of Chronic Primary Low Back Pain by Spinal Manipulative Therapy is Accompanied by Decreases in Segmental Mechanical Hyperalgesia and Pain Catastrophizing: A Randomized Placebo-controlled Dual-blind Mixed Experimental Trial. THE JOURNAL OF PAIN 2024; 25:104500. [PMID: 38369221 DOI: 10.1016/j.jpain.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Chronic primary low back pain (CPLBP) refers to low back pain that persists over 3 months, that cannot be explained by another chronic condition, and that is associated with emotional distress and disability. Previous studies have shown that spinal manipulative therapy (SMT) is effective in relieving CPLBP, but the underlying mechanisms remain elusive. This randomized placebo-controlled dual-blind mixed experimental trial (NCT05162924) aimed to investigate the efficacy of SMT to improve CPLBP and its underlying mechanisms. Ninety-eight individuals with CPLBP and 49 controls were recruited. Individuals with CPLBP received SMT (n = 49) or a control intervention (n = 49), 12 times over 4 weeks. The primary outcomes were CPLBP intensity (0-100 on a numerical rating scale) and disability (Oswestry Disability Index). Secondary outcomes included pressure pain thresholds in 4 body regions, pain catastrophizing, Central Sensitization Inventory, depressive symptoms, and anxiety scores. Individuals with CPLBP showed widespread mechanical hyperalgesia (P < .001) and higher scores for all questionnaires (P < .001). SMT reduced pain intensity compared with the control intervention (mean difference: -11.7 [95% confidence interval, -11.0 to -12.5], P = .01), but not disability (P = .5). Similar mild to moderate adverse events were reported in both groups. Mechanical hyperalgesia at the manipulated segment was reduced after SMT compared with the control intervention (P < .05). Pain catastrophizing was reduced after SMT compared with the control intervention (P < .05), but this effect was not significant after accounting for changes in clinical pain. Although the reduction of segmental mechanical hyperalgesia likely contributes to the clinical benefits of SMT, the role of pain catastrophizing remains to be clarified. PERSPECTIVE: This randomized controlled trial found that 12 sessions of SMT yield greater relief of CPLBP than a control intervention. These clinical effects were independent of expectations, and accompanied by an attenuation of hyperalgesia in the targeted segment and a modulation of pain catastrophizing.
Collapse
Affiliation(s)
- Carlos Gevers-Montoro
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois- Rivières, Quebec, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada; Madrid College of Chiropractic, RCU María Cristina, San Lorenzo de El Escorial, Madrid, Spain
| | - Blanca Romero-Santiago
- Madrid College of Chiropractic, RCU María Cristina, San Lorenzo de El Escorial, Madrid, Spain
| | - Isabel Medina-García
- Madrid College of Chiropractic, RCU María Cristina, San Lorenzo de El Escorial, Madrid, Spain
| | | | - Luis Álvarez-Gálovich
- Instituto Avanzado de Columna, Fundación Jiménez Díaz Hospital, Madrid, Madrid, Spain; Fujitega Research Foundation, Madrid, Madrid, Spain
| | | | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois- Rivières, Quebec, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
9
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
10
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The effects of virtual reality neuroscience-based therapy on clinical and neuroimaging outcomes in patients with chronic back pain: a randomized clinical trial. Pain 2024; 165:1860-1874. [PMID: 38466872 DOI: 10.1097/j.pain.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/06/2024] [Indexed: 03/13/2024]
Abstract
ABSTRACT Chronic pain remains poorly managed. The integration of immersive technologies (ie, virtual reality [VR]) with neuroscience-based principles may provide effective pain treatment by targeting cognitive and affective neural processes that maintain pain and therefore potentially changing neurobiological circuits associated with pain chronification and amplification. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (waitlist control; n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre-treatment and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared with the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs pre-treatment, with effects persisting at 2-week follow-up. These improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved by VRNT, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with increases in dorsomedial prefrontal functional connectivity with the superior somatomotor, anterior prefrontal and visual cortices, and decreased white matter fractional anisotropy in the corpus callosum adjacent to the anterior cingulate, relative to the control condition. Thus, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly through changes in somatosensory and prefrontal brain networks.
Collapse
Affiliation(s)
- Marta Čeko
- Institute of Cognitive Science, University of Colorado, Boulder, CO, United States
| | | | - Lynn Webster
- U.S. Center for Policy, Scientific Affairs, Dr. Vince Clinical Research, Salt Lake City, UT, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Mark A Lumley
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
11
|
Li X, Kass G, Wiers CE, Shi Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. CURRENT ADDICTION REPORTS 2024; 11:797-808. [PMID: 39156196 PMCID: PMC11329602 DOI: 10.1007/s40429-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review The brain's salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mounting evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims to synthesize recent functional neuroimaging research emphasizing the SN's involvement in SUDs and physical/socioemotional pain and explore the therapeutic prospects of targeting the SN for SUD treatment. Recent Findings The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments. Summary The review highlights the significance of alterations in the structure and function of the SN as potential mechanisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the development of next-generation treatment modalities.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Gabriel Kass
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Bonanno M, Papa GA, Ruffoni P, Catalioto E, De Luca R, Maggio MG, Calabrò RS. The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies. Healthcare (Basel) 2024; 12:1353. [PMID: 38998887 PMCID: PMC11241316 DOI: 10.3390/healthcare12131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Osteopathic manipulative treatment (OMT) is a hands-on therapy aiming to achieve the global homeostasis of the patient. OMT focuses on treating the somatic dysfunctions characterized by tissue modifications, body asymmetry, and range-of-motion restrictions. The benefits related to OMT are thought to be associated with the interconnectedness of the body's systems and the inherent capacity for self-healing. However, whether OMT can influence brain activity, and, consequently, neurophysiological responses is an open research question. Our research investigates the literature to identify the effects of OMT on brain activity. The main purpose of the research question is: can OMT influence brain activity and consequently neurophysiological responses? A scoping review was conducted, searching the following databases: PubMed, Google Scholar, and OSTEOMED.DR (Osteopathic Medical Digital Repository), Scopus, Web of Science (WoS), and Science Direct. The initial search returned 114 articles, and after removing duplicates, 69 were considered eligible to be included in the final sample. In the end, eight studies (six randomized controlled trials, one pilot study, and one cross-over study) were finally included and analyzed in this review. In conclusion, OMT seems to have a role in influencing functional changes in brain activity in healthy individuals and even more in patients with chronic musculoskeletal pain. However, further RCT studies are needed to confirm these findings. Registration protocol: CRD42024525390.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (M.G.M.); (R.S.C.)
| | | | - Paola Ruffoni
- International College of Osteopathic Medicine, 20092 Milan, Italy;
| | | | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (M.G.M.); (R.S.C.)
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (M.G.M.); (R.S.C.)
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (M.G.M.); (R.S.C.)
| |
Collapse
|
13
|
Zhang C, Zhang Z, Li Y, Yin Y, Feng C, Zhan W, Fu R, Yu Q, Jiang G, Wang C. Alterations in functional connectivity in patients with non-specific chronic low back pain after motor control exercise: a randomized trial. Eur J Phys Rehabil Med 2024; 60:319-330. [PMID: 38358464 PMCID: PMC11112508 DOI: 10.23736/s1973-9087.24.08087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Motor control exercise (MCE) is effective in alleviating non-specific chronic low back pain (NCLBP). Neuro-imaging research is warranted to explore the underlying neural mechanisms of MCE. AIM We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the central mechanism underpinning the effects of MCE in patients with NCLBP. DESIGN A randomized, single-blinded, controlled trial. SETTING The setting was out-patient and community. POPULATION Fifty-eight patients with NCLBP. METHODS Patients were randomized into the MCE or manual therapy (MT) group. All the participants completed pain-related clinical assessments and rs-fMRI scans before and after intervention. We performed exploratory whole-brain analyses in regional homogeneity (ReHo) and resting-state functional connectivity (rsFC) with significant post-pre differences in ReHo before and after intervention, and investigated associations between imaging and pain-related clinical assessments. RESULTS Compared with the MT group, a greater alleviation in pain intensity and disability was observed in the MCE group after intervention, and was sustained at the 6-month follow-up (P<0.001). Only the MCE group showed increased ReHo values in the right pre-central gyrus and decreased ReHo values in the bilateral posterior cerebellum (voxel level P<0.001, cluster-level FWE corrected P<0.05). Decreased rsFC of the right posterior cerebellum-left superior parietal gyrus and left insula were significantly positively associated with pain-related disability (voxel level P<0.001, cluster-level FWE corrected P<0.05). CONCLUSIONS These findings demonstrated that MCE had superior effects in relieving pain and pain-related disability, which might be associated with its modulation of rsFC between the cerebellum and areas involved in sensory-discriminative processing of noxious and somato-sensory stimuli, affection, and cognition. CLINICAL REHABILITATION IMPACT This study provided preliminary evidence that MCE might alleviate NCLBP through its modulation of the function of brain areas related to chronic pain and postural control. Those results support MCE's clinical application and help physiotherapists to provide better multidisciplinary interventions with the combination of MCE and other first-line treatments.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhou Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuelong Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chenyang Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenfeng Zhan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruochen Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China -
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Li X, Meng F, Huang W, Cui Y, Meng F, Wu S, Xu H. The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances. Neural Plast 2024; 2024:5599046. [PMID: 38529366 PMCID: PMC10963108 DOI: 10.1155/2024/5599046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Low back pain (LBP) is a leading cause of global disabilities. Numerous molecular, cellular, and anatomical factors are implicated in LBP. Current issues regarding neurologic alterations in LBP have focused on the reorganization of peripheral nerve and spinal cord, but neural mechanisms of exactly what LBP impacts on the brain required further researches. Based on existing clinical studies that chronic pain problems were accompanying alterations in brain structures and functions, researchers proposed logical conjectures that similar alterations occur in LBP patients as well. With recent extensive studies carried out using noninvasive neuroimaging technique, increasing number of abnormalities and alterations has been identified. Here, we reviewed brain alterations including white matters, grey matters, and neural circuits between brain areas, which are involved in chronic LBP. Moreover, brain structural and functional connectivity abnormalities are correlated to the happening and transition of LBP. The negative emotions related to back pain indicate possible alterations in emotional brain regions. Thus, the aim of this review is to summarize current findings on the alterations corresponding to LBP in the brain. It will not only further our understanding of etiology of LBP and understanding of negative emotions accompanying with back pain but also provide ideas and basis for new accesses to the diagnosis, treatment, and rehabilitation afterward based on integral medicine.
Collapse
Affiliation(s)
- Xuyang Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wenye Huang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yue Cui
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fanbo Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Huang L, Li J, Xiao B, Tang Y, Huang J, Li Y, Fang F. Bibliometric Analysis of Research Trends on Manual Therapy for Low Back Pain Over Past 2 Decades. J Pain Res 2023; 16:3045-3060. [PMID: 37701559 PMCID: PMC10493154 DOI: 10.2147/jpr.s418458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose Low back pain (LBP) is a prevalent musculoskeletal disorder, and manual therapy (MT) is frequently employed as a non-pharmacological treatment for LBP. This study aims to explore the research hotspots and trends in MT for LBP. MT has gained widespread acceptance in clinical practice due to its proven safety and effectiveness. The study aims to analyze the developments in the field of MT for LBP over the past 23 years, including leading countries, institutions, authoritative authors, journals, keywords, and references. It endeavors to provide a comprehensive summary of the existing research foundation and to analyze the current cutting-edge research trends. Methods Relevant articles between 2000 and 2023 were retrieved from the Web of Science Core Collection (WOSCC) database. We used the software VOSviewer and CiteSpace to perform the analysis and summarize current research hotspots and emerging trends. Results Through screening, we included 1643 papers from 2000 to 2023. In general, the number of articles published each year showed an upward trend. The United States had the highest number of publications and citations. Canadian Memorial Chiropractic College was the most published research institution. The University of Pittsburgh in the United States had the most collaboration with other research institutions. Long, Cynthia R. was the active author. Journal of Manipulative and Physiological Therapeutics was the most prolific journal with 234 publications. Conclusion This study provides an overview of the current status and trends of clinical studies on MT for LBP in the past 23 years using the visualization software, which may help researchers identify potential collaborators and collaborating institutions, hot topics, and new perspectives in research frontiers, while providing new clinical practice ideas for the treatment of LBP.
Collapse
Affiliation(s)
- Lele Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People’s Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Jiamin Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Baiyang Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yin Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Jinghui Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Ying Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Fanfu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
16
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The Effects of Virtual Reality Neuroscience-based Therapy on Clinical and Neuroimaging Outcomes in Patients with Chronic Back Pain: A Randomized Clinical Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.24.23293109. [PMID: 37546872 PMCID: PMC10402228 DOI: 10.1101/2023.07.24.23293109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Chronic pain remains poorly managed. The integration of innovative immersive technologies (i.e., virtual reality (VR)) with recent neuroscience-based principles that position the brain as the key organ of chronic pain may provide a more effective pain treatment than traditional behavioral therapies. By targeting cognitive and affective processes that maintain pain and potentially directly changing neurobiological circuits associated with pain chronification and amplification, VR-based pain treatment has the potential for significant and long-lasting pain relief. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre- and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared to the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs. pre-treatment, with effects persisting at 2-week follow-up. The improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with modest increases in functional connectivity of the somatomotor and default mode networks and decreased white matter fractional anisotropy in the corpus callosum adjacent to anterior cingula, relative to the control condition. This, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly via changes in somatosensory and prefrontal brain networks.
Collapse
|
17
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
18
|
Adaptive changes in sensorimotor processing in patients with acute low back pain. Sci Rep 2022; 12:21741. [PMID: 36526879 PMCID: PMC9758154 DOI: 10.1038/s41598-022-26174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In low back pain (LBP), primary care and secondary prevention of recurrent and persistent LBP are not always successful. Enhanced understanding of neural mechanisms of sensorimotor processing and pain modulation in patients with acute LBP is mandatory. This explorative fMRI study investigated sensorimotor processing due to mechanosensory stimulation of the lumbar spine. We studied 19 adult patients with acute LBP (< 4 weeks of an acute episode) and 23 healthy controls. On a numeric rating scale, patients reported moderate mean pain intensity of 4.5 out of 10, while LBP-associated disability indicated mild mean disability. The event-related fMRI analysis yielded no between-group differences. However, the computation of functional connectivity resulted in adaptive changes in networks involved in sensorimotor processing in the patient group: Connectivity strength was decreased in the salience and cerebellar networks but increased in the limbic and parahippocampal networks. Timewise, these results indicate that early connectivity changes might reflect adaptive physiological processes in an episode of acute LBP. These findings raise intriguing questions regarding their role in pain persistence and recurrences of LBP, particularly concerning the multiple consequences of acute LBP pain. Advanced understanding of neural mechanisms of processing non-painful mechanosensations in LBP may also improve therapeutic approaches.
Collapse
|
19
|
Lia EN, Papassidero PC, Coelho EB, Dach F, Alexandre-Santos L, Trevisan AC, Santos LELE, Silvah JH, Lanchote VL, Pasqua OD, Wichert-Ana L. Neurobiological substrates of chronic low back pain (CLBP): a brain [ 99mTc]Tc-ECD SPECT study. Eur J Hybrid Imaging 2022; 6:26. [PMID: 36404393 PMCID: PMC9676153 DOI: 10.1186/s41824-022-00145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recent neuroimaging studies have demonstrated pathological mechanisms related to cerebral neuroplasticity in chronic low back pain (CLBP). Few studies have compared cerebral changes between patients with and without pain in the absence of an experimentally induced stimulus. We investigated the neurobiological substrates associated with chronic low back pain using [99mTc]Tc-ECD brain SPECT and correlated rCBF findings with the numeric rating scale (NRS) of pain and douleur neuropathique en 4 questions (DN4). Ten healthy control volunteers and fourteen patients with neuropathic CLBP due to lumbar disc herniation underwent cerebral SPECT scans. A quantitative comparison of rCBF findings between patients and controls was made using the Statistical Parametric Mapping (SPM), revealing clusters of voxels with a significant increase or decrease in rCBF. The intensity of CLBP was assessed by NRS and by DN4. RESULTS The results demonstrated an rCBF increase in clusters A (occipital and posterior cingulate cortex) and B (right frontal) and a decrease in cluster C (superior parietal lobe and middle cingulate cortex). NRS scores were inversely and moderately correlated with the intensity of rCBF increase in cluster B, but not to rCBF changes in clusters A and C. DN4 scores did not correlate with rCBF changes in all three clusters. CONCLUSIONS This study will be important for future therapeutic studies that aim to validate the association of rCBF findings with the pharmacokinetic and pharmacodynamic profiles of therapeutic challenges in pain.
Collapse
Affiliation(s)
- Erica Negrini Lia
- grid.7632.00000 0001 2238 5157Department of Dentistry, School of Health Sciences, University of Brasilia (UnB), Brasilia, DF Brazil
| | - Priscila Colavite Papassidero
- grid.11899.380000 0004 1937 0722Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eduardo Barbosa Coelho
- grid.11899.380000 0004 1937 0722Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Fabíola Dach
- grid.11899.380000 0004 1937 0722Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Leonardo Alexandre-Santos
- grid.11899.380000 0004 1937 0722Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Ana Carolina Trevisan
- grid.11899.380000 0004 1937 0722Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Lucas Emmanuel Lopes e Santos
- grid.11899.380000 0004 1937 0722Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Jose Henrique Silvah
- grid.11899.380000 0004 1937 0722Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Vera Lúcia Lanchote
- grid.11899.380000 0004 1937 0722Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Oscar Della Pasqua
- grid.83440.3b0000000121901201Clinical Pharmacology and Therapeutics, School of Life and Medical Sciences, University College London, London, UK
| | - Lauro Wichert-Ana
- grid.11899.380000 0004 1937 0722Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil ,grid.11899.380000 0004 1937 0722Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP Brazil ,Seção de Medicina Nuclear, Hospital das Clínicas – FMRP – USP, Av. Bandeirantes, 3900, CEP: 14048-900 Ribeirão Preto, SP Brasil
| |
Collapse
|
20
|
Miao J, Ailes I, Krisa L, Fleming K, Middleton D, Talekar K, Natale P, Mohamed FB, Hines K, Matias CM, Alizadeh M. Case report: The promising application of dynamic functional connectivity analysis on an individual with failed back surgery syndrome. Front Neurosci 2022; 16:987223. [PMID: 36213747 PMCID: PMC9537947 DOI: 10.3389/fnins.2022.987223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Failed back surgery syndrome (FBSS), a chronic neuropathic pain condition, is a common indication for spinal cord stimulation (SCS). However, the mechanisms of SCS, especially its effects on supraspinal/brain functional connectivity, are still not fully understood. Resting state functional magnetic resonance imaging (rsfMRI) studies have shown characteristics in patients with chronic low back pain (cLBP). In this case study, we performed rsfMRI scanning (3.0 T) on an FBSS patient, who presented with chronic low back and leg pain following her previous lumbar microdiscectomy and had undergone permanent SCS. Appropriate MRI safety measures were undertaken to scan this subject. Seed-based functional connectivity (FC) was performed on the rsfMRI data acquired from the FBSS subject, and then compared to a group of 17 healthy controls. Seeds were identified by an atlas of resting state networks (RSNs), which is composed of 32 regions grouped into 8 networks. Sliding-window method and k-means clustering were used in dynamic FC analysis, which resulted in 4 brain states for each group. Our results demonstrated the safety and feasibility of 3T MRI scanning in a patient with implanted SCS system. Compared to the brain states of healthy controls, the FBSS subject presented very different FC patterns in less frequent brain states. The mean dwell time of brain states showed distinct distributions: the FBSS subject seemed to prefer a single state over the others. Although future studies with large sample sizes are needed to make statistical conclusions, our findings demonstrated the promising application of dynamic FC to provide more granularity with FC changes associated with different brain states in chronic pain.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Jingya Miao,
| | - Isaiah Ailes
- Sidney Kimmel Medical College, Philadelphia, PA, United States
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kristen Fleming
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon Middleton
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran Talekar
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Peter Natale
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin Hines
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Wen Y, Chen XM, Jin X, Ling DY, Chen S, Huang Q, Kong N, Chai JE, Wang Q, Xu MS, Du HG. A spinal manipulative therapy altered brain activity in patients with lumbar disc herniation: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:974792. [PMID: 36161170 PMCID: PMC9490403 DOI: 10.3389/fnins.2022.974792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Lumbar disc herniation (LDH) is one of the leading causes of low-back pain and results in a series of clinical symptoms, including pain, reflex loss, and muscle weakness. Spinal manipulative therapy (SMT) can relieve pain and promote internal and external stabilization of the lumbar spine. In this study, we investigated whether the brain alterations of LDH patients with SMT were frequency-dependent based on the calculation of Amplitude of Low-Frequency Fluctuations (ALFF) and fractional ALFF (fALFF). Further, we established a cohort of LDH patients to evaluate the contribution of SMT treatments to brain functional reorganization. Methods A total of 55 participants, including 27 LDH patients and 28 health controls (HCs), were collected. All LDH patients underwent two fMRI scans (before SMT and after the sixth SMT session). To represent LDH-related brain oscillatory activities, we calculated the ALFF and fALFF in the conventional band (0.01-0.08 Hz), the slow-4 band (0.027-0.073 Hz), and the slow-5 band (0.01-0.027 Hz). Moreover, we extracted ALFF and fALFF values in clusters with significant differences to evaluate the SMT effect. Results Compared with HCs, the LDH patients before SMT (LDH-pre) exhibited increased fALFF in right lingual gyri in the conventional band, and showed increased fALFF in left Cerebelum_Crus1 in the slow-4 band. We further examined the abnormal brain activities changes before and after the SMT intervention. The ALFF and fALFF values of LDH-pre group were higher than those of the HCs and LDH-pos groups. After SMT, the increased ALFF and fALFF values were suppressed for patients in conventional band and slow-4 band. Conclusion The present study characterized the altered regional patterns in spontaneous neural activity in patients with LDH. Meanwhile, SMT is an effective treatment of LDH, and we supposed that it might have been involved in modulating dysfunctional brain regions which are important for the processing of pain. The findings of the current study may provide new insights to understand pathological mechanism of LDH.
Collapse
Affiliation(s)
- Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xiao-Min Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Dong-Ya Ling
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shao Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Qin Huang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jin-Er Chai
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Qing Wang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Mao-Sheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hong-Gen Du
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
22
|
Grabowska W, Burton W, Kowalski MH, Vining R, Long CR, Lisi A, Hausdorff JM, Manor B, Muñoz-Vergara D, Wayne PM. A systematic review of chiropractic care for fall prevention: rationale, state of the evidence, and recommendations for future research. BMC Musculoskelet Disord 2022; 23:844. [PMID: 36064383 PMCID: PMC9442928 DOI: 10.1186/s12891-022-05783-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falls in older adults are a significant and growing public health concern. There are multiple risk factors associated with falls that may be addressed within the scope of chiropractic training and licensure. Few attempts have been made to summarize existing evidence on multimodal chiropractic care and fall risk mitigation. Therefore, the broad purpose of this review was to summarize this research to date. BODY: Systematic review was conducted following PRISMA guidelines. Databases searched included PubMed, Embase, Cochrane Library, PEDro, and Index of Chiropractic Literature. Eligible study designs included randomized controlled trials (RCT), prospective non-randomized controlled, observational, and cross-over studies in which multimodal chiropractic care was the primary intervention and changes in gait, balance and/or falls were outcomes. Risk of bias was also assessed using the 8-item Cochrane Collaboration Tool. The original search yielded 889 articles; 21 met final eligibility including 10 RCTs. One study directly measured the frequency of falls (underpowered secondary outcome) while most studies assessed short-term measurements of gait and balance. The overall methodological quality of identified studies and findings were mixed, limiting interpretation regarding the potential impact of chiropractic care on fall risk to qualitative synthesis. CONCLUSION Little high-quality research has been published to inform how multimodal chiropractic care can best address and positively influence fall prevention. We propose strategies for building an evidence base to inform the role of multimodal chiropractic care in fall prevention and outline recommendations for future research to fill current evidence gaps.
Collapse
Affiliation(s)
- Weronika Grabowska
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| | - Wren Burton
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA.
| | - Matthew H Kowalski
- Osher Clinical Center for Integrative Medicine, Brigham and Women's Healthcare Center, 850 Boylston Street, Suite 422, Chestnut Hill, MA, 02445, USA
| | - Robert Vining
- Palmer Center for Chiropractic Research, 1000 Brady Street, Davenport, IA, 52803, USA
| | - Cynthia R Long
- Palmer Center for Chiropractic Research, 1000 Brady Street, Davenport, IA, 52803, USA
| | - Anthony Lisi
- Yale University Center for Medical Informatics, 300 George Street, Suite 501, New Haven, CT, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement Cognition and Mobility, Tel Aviv Sourasky Medical Center, Dafna St 5, Tel Aviv-Yafo, Israel
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, 1200 Centre Street, Boston, MA, 02131, USA
| | - Dennis Muñoz-Vergara
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| | - Peter M Wayne
- Brigham and Women's Hospital and Harvard Medical School Division of Preventive Medicine, Osher Center for Integrative Medicine, 900 Commonwealth Avenue, 3rd Floor, Boston, MA, 02215, USA
| |
Collapse
|
23
|
Yi SJ, Chen RB, Zhong YL, Huang X. The Effect of Long-Term Menstrual Pain on Large-Scale Brain Network in Primary Dysmenorrhea Patients. J Pain Res 2022; 15:2123-2131. [PMID: 35923844 PMCID: PMC9342881 DOI: 10.2147/jpr.s366268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Primary dysmenorrhea (PD) is a common gynecological disease, characterized by crampy and suprapubic pain occurring with menses. Growing evidences demonstrated that PD patients were associated with abnormalities in brain function and structure. However, little is known regarding whether the large-scale brain network changes in PD patients. The purpose of this study was to investigate the effect of long-term menstrual pain on large-scale brain network in PD patients using independent component analysis (ICA) method. Methods Twenty-eight PD patients (female, mean age, 24.25±1.00 years) and twenty-eight healthy controls (HCs) (mean age, 24.46±1.31 years), closely matched for age, sex, and education, underwent resting-state magnetic resonance imaging scans. ICA was applied to extract the resting-state networks (RSNs) in two groups. Then, two-sample t-tests were conducted to investigate different intranetwork FCs within RSNs and interactions among RSNs between two groups. Results Compared to the HC group, PD patients showed significant increased intra-network FCs within the auditory network (AN), sensorimotor network (SMN), right executive control network (RECN). However, PD patients showed significant decreased intra-network FCs within ventral default mode network (vDMN) and salience network (SN). Moreover, FNC analysis showed increased VN-AN and decreased VN-SMN functional connectivity between two groups. Conclusion Our study highlighted that PD patients had abnormal brain networks related to auditory, sensorimotor and higher cognitive network. Our results offer important insights into the altered large-scale brain network neural mechanisms of pain in PD patients.
Collapse
Affiliation(s)
- Si-Jie Yi
- Department of Gynecology and Obstetrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
- Correspondence: Xin Huang, Department of Ophthalmology, Jiangxi Provincial People’s Hospital, No. 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, People’s Republic of China, Tel +86 15879215294, Email
| |
Collapse
|
24
|
Xu H, Seminowicz DA, Krimmel SR, Zhang M, Gao L, Wang Y. Altered Structural and Functional Connectivity of Salience Network in Patients with Classic Trigeminal Neuralgia. THE JOURNAL OF PAIN 2022; 23:1389-1399. [PMID: 35381362 DOI: 10.1016/j.jpain.2022.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Classic trigeminal neuralgia (CTN) is a neuropathic pain disorder displaying spontaneously stabbing or electric shock-like paroxysms in the face. Previous research suggests structural and functional abnormalities in brain regions related to sensory and cognitive-affective dimensions of pain contribute to the pathophysiology of CTN. However, few studies to date have investigated how changes in whole-brain functional networks and white matter connectivity are related to CTN. We performed an independent component analysis to examine abnormalities in resting state functional connectivity of large-scale networks in 48 patients with CTN compared to 46 matched healthy participants. Then, diffusion tensor tractography was performed to test whether these alterations of functional connectivity in intrinsic networks were associated with impairment of the white matter tracts connecting them. Distinct patterns of functional connectivity were detected within default mode network, somatosensory network, and salience network (SN) in the CTN group when compared with healthy controls. Furthermore, abnormality of SN was negatively correlated with pain severity. In support of aberrant functional connectivity within SN, structural disintegration was observed in the white matter tract from left anterior insula (aIns) to left anterior cingulate cortex (ACC) in CTN. These results suggest that altered structural and functional connectivity between aIns and ACC may underpin the aberrant SN in patients with CTN and provide an alternative target for clinical interventions. PERSPECTIVE: This article presents distinctive abnormalities of functional and structural connectivity from aIns to ACC in the patients with CTN, which is associated with pain ratings. This measure could potentially provide an alternative target for clinicians to alleviate this type of intermittent and refractory pain.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
| | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Gao
- Department of Mechanical Engineering, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Altered effective connectivity within the cingulo-frontal-parietal cognitive attention networks in chronic low back pain: a dynamic causal modeling study. Brain Imaging Behav 2022; 16:1516-1527. [PMID: 35080703 DOI: 10.1007/s11682-021-00623-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Dysfunction of the cingulo-frontal-parietal (CFP) cognitive attention network has been associated with the pathophysiology of chronic low back pain (cLBP). However, the direction of information processing within this network remains largely unknown. We aimed to study the effective connectivity among the CFP regions in 36 cLBP patients and 36 healthy controls by dynamic causal modeling (DCM). Both the resting-state and task-related (Multi-Source Interference Task, MSIT) functional magnetic resonance imaging (fMRI) data were collected and analyzed. The relationship between the effective connectivity of the CFP regions and clinical measures was also examined. Our results suggested that cLBP had significantly altered resting-state effective connectivity of the prefrontal cortex (PFC)-to-mid-cingulate cortex (MCC) (increased) and MCC-to-left superior parietal cortex (LPC) (decreased) pathways as compared with healthy controls. MSIT-related DCM suggested that the interference task could significantly increase the effective connectivity of the right superior parietal cortex (RPC)-to-PFC and RPC-to-MCC pathways in cLBP than that in healthy controls. The control task could significantly decrease the effective connectivity of the MCC-to-LPC and MCC-to-RPC pathways in cLBP than that in healthy controls. The endogenous connectivity of the PFC-to-RPC pathway in cLBP was significantly lower than that in healthy controls. No significant correlations were found between the effective connectivity within CFP networks and pain/depression scores in patients with cLBP. In summary, our findings suggested altered effective connectivity in multiple pathways within the CFP network in both resting-state and performing attention-demanding tasks in patients with cLBP, which extends our understanding of attention dysfunction in patients with cLBP.
Collapse
|
26
|
Provencher B, Northon S, Piché M. Segmental Chiropractic Spinal Manipulation Does not Reduce Pain Amplification and the Associated Pain-Related Brain Activity in a Capsaicin-Heat Pain Model. FRONTIERS IN PAIN RESEARCH 2021; 2:733727. [PMID: 35295444 PMCID: PMC8915690 DOI: 10.3389/fpain.2021.733727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal injuries lead to sensitization of nociceptors and primary hyperalgesia (hypersensitivity to painful stimuli). This occurs with back injuries, which are associated with acute pain and increased pain sensitivity at the site of injury. In some cases, back pain persists and leads to central sensitization and chronic pain. Thus, reducing primary hyperalgesia to prevent central sensitization may limit the transition from acute to chronic back pain. It has been shown that spinal manipulation (SM) reduces experimental and clinical pain, but the effect of SM on primary hyperalgesia and hypersensitivity to painful stimuli remains unclear. The goal of the present study was to investigate the effect of SM on pain hypersensitivity using a capsaicin-heat pain model. Laser stimulation was used to evoke heat pain and the associated brain activity, which were measured to assess their modulation by SM. Eighty healthy participants were recruited and randomly assigned to one of the four experimental groups: inert cream and no intervention; capsaicin cream and no intervention; capsaicin cream and SM at T7; capsaicin cream and placebo. Inert or capsaicin cream (1%) was applied to the T9 area. SM or placebo were performed 25 min after cream application. A series of laser stimuli were delivered on the area of cream application (1) before cream application, (2) after cream application but before SM or placebo, and (3) after SM or placebo. Capsaicin cream induced a significant increase in laser pain (p < 0.001) and laser-evoked potential amplitude (p < 0.001). However, SM did not decrease the amplification of laser pain or laser-evoked potentials by capsaicin. These results indicate that segmental SM does not reduce pain hypersensitivity and the associated pain-related brain activity in a capsaicin-heat pain model.
Collapse
Affiliation(s)
- Benjamin Provencher
- Pain Neurophysiology Lab, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Stéphane Northon
- Pain Neurophysiology Lab, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Pain Neurophysiology Lab, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|