1
|
Nhu NT, Trang TTQ, Chen DYT, Kang JH. Brain modulatory effects of rehabilitation interventions in fibromyalgia: a systematic review of magnetic resonance imaging studies. Neurol Sci 2025; 46:2041-2054. [PMID: 39745584 DOI: 10.1007/s10072-024-07967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/17/2024] [Indexed: 04/17/2025]
Abstract
OBJECTIVES Fibromyalgia imposes a considerable burden of disability worldwide, and its therapies include rehabilitation interventions. However, the overall brain modulatory effects of rehabilitation interventions and their effects on clinical improvements in patients with fibromyalgia remain unclear. This systematic review of magnetic resonance imaging studies synthesised evidence for the brain modulatory effects of rehabilitation in patients with fibromyalgia. METHODS We searched PubMed, EMBASE, and Web of Science databases from inception to August 2023 for English articles on rehabilitation-induced brain function changes in patients with fibromyalgia. Methodological evaluation was performed using the Physiotherapy Evidence Database checklist. RESULTS We included 17 studies with 416 participants reporting the brain modulatory effects of several rehabilitation methods (i.e. exercises, brain stimulation, cognitive behavioural therapy, nerve stimulation, and neurofeedback). These studies received fair to good scores on the Physiotherapy Evidence Database scale. Rehabilitation-induced changes in brain function were correlated with the presentation of fibromyalgia. From the included studies, baseline brain functions could successfully predict posttreatment changes in disease symptoms. However, limited evidence is available for the effects of rehabilitation on brain structure. CONCLUSION Rehabilitation was found to modulate brain functions to alleviate fibromyalgia symptoms and improve patients' quality of life. This finding supports the hypothesis that brain modulation is one of the mechanisms underlying the rehabilitation-mediated mitigation of fibromyalgia. Our results suggest that brain function measured through functional magnetic resonance imaging can help predict the response of patients with fibromyalgia to rehabilitation programmes (PROSPERO registration number: CRD42023387612).
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, 94117, Vietnam
| | - Tran Thi Quynh Trang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Faculty of Rehabilitation, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuang-Ho Hospital, New Taipei City, 235, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Jiunn-Horng Kang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing street, Xinyi District, Taipei, 110, Taiwan.
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Devigili G, Di Stefano G, Donadio V, Frattale I, Grazzi L, Mantovani E, Nolano M, Provitera V, Quitadamo SG, Tamburin S, Truini A, Valeriani M, Furia A, Vecchio E, Fischetti F, Greco G, Telesca A, de Tommaso M. Therapeutic approach to fibromyalgia: a consensus statement on pharmacological and non-pharmacological treatment from the neuropathic pain special interest group of the Italian neurological society. Neurol Sci 2025; 46:2263-2288. [PMID: 39982626 PMCID: PMC12003471 DOI: 10.1007/s10072-025-08048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Although fibromyalgia is a disabling disease, there is no targeted therapy for specific neurotransmitters or inflammatory mediators. Our aim was to provide neurologists with practical guidance for the management of these difficult patients based on a critical, narrative and non-systematic review of randomized controlled trials (RCTs) from the last 10 years. METHODS The members of the Special Interest Group Neuropathic Pain of the Italian Neurological Society evaluated the randomized controlled trials (RCTs) of the last 10 years and answered questions that allow a consensus on the main pharmacological and non-pharmacological approaches. RESULTS The neuropathic pain working group agreed on prescribing antiepileptic drugs or antidepressants in the case of comorbidities with anxiety and depression. As a second choice, experts have agreed on the association of antiepileptics and antidepressants, while they disagree with the use of opioids. Medical cannabis and nutraceuticals are promising new treatment options, although more data is needed to prove their efficacy. The neurologists agreed in suggesting physical activity at the first visit, particularly aerobic and strength training. As a second choice, they considered a cognitive behavioral therapy approach to be useful. CONCLUSIONS Pharmacologic treatment with antiepileptic drugs and antidepressants in patients with co-occurring anxiety and depression, as well as an early nonpharmacologic approach based primarily on physical activity, may be a useful indication in contemporary neurology clinical practice. Non-pharmacological options, such as cognitive behavioral therapy and non-invasive brain stimulation NIBS, could improve evidence of efficacy and lead to relevant improvement in FM-related disability.
Collapse
Affiliation(s)
- G Devigili
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - G Di Stefano
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - V Donadio
- Clinica Neurologica Bellaria Hospital, Bologna, Italy
| | - I Frattale
- Child Neurology and Psychiatric Unit, Tor Vergata University, Rome, Italy
| | - L Grazzi
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - E Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - M Nolano
- Skin Biopsy Laboratory, Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80100, Naples, Italy
| | - V Provitera
- Skin Biopsy Laboratory, Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - S G Quitadamo
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - S Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - A Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - M Valeriani
- Child Neurology and Psychiatric Unit, Tor Vergata University, Rome, Italy
| | - A Furia
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - E Vecchio
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - F Fischetti
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - G Greco
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - A Telesca
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - M de Tommaso
- DiBrain Department, Bari Aldo Moro University, Bari, Italy.
| |
Collapse
|
3
|
Antoniazzi E, Cavigioli C, Tang V, Zoccola C, Todisco M, Tassorelli C, Cosentino G. Effects of Repetitive Transcranial Magnetic Stimulation Applied over the Primary Motor Cortex on the Offset Analgesia Phenomenon. Life (Basel) 2025; 15:182. [PMID: 40003592 PMCID: PMC11856385 DOI: 10.3390/life15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left upper limb primary motor cortex (M1) on the offset analgesia (OA) phenomenon, a measure of endogenous pain modulation. In particular, we aim to determine whether rTMS influences OA differently in the forearm region, corresponding to the stimulated cortical area, compared to the trigeminal region. Twenty-two healthy volunteers underwent three experimental sessions: a baseline session without stimulation, an active rTMS session, and a sham rTMS session. Quantitative sensory testing (QST) paradigms, including warm and cold detection thresholds, heat pain threshold corresponding to a visual analogue scale (VAS) score of approximately 50-60 out of 100 (Pain50-60), and constant and offset trials, were assessed in both the forearm and trigeminal regions. The results revealed that active rTMS significantly enhanced the OA phenomenon in the forearm during the late phase, while no significant effects were observed in the trigeminal region. These findings suggest that rTMS may modulate central pain mechanisms in a body region-specific manner, potentially linked to the somatotopic organization of M1. This study points to possible mechanisms of action of rTMS for pain relief, highlighting the importance of region-specific effects in chronic pain treatment. Further research is needed to investigate the underlying mechanisms and clinical applicability of rTMS in patients with chronic pain conditions, especially when OA is compromised.
Collapse
Affiliation(s)
- Elisa Antoniazzi
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Camilla Cavigioli
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Vanessa Tang
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Clara Zoccola
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Massimiliano Todisco
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Giuseppe Cosentino
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Chowdhury NS, Millard SK, de Martino E, Larsen DB, Seminowicz DA, Schabrun SM, de Andrade DC, Graven-Nielsen T. Posterior-superior insula repetitive transcranial magnetic stimulation reduces experimental tonic pain and pain-related cortical inhibition in humans. Pain 2024:00006396-990000000-00788. [PMID: 39679661 DOI: 10.1097/j.pain.0000000000003488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
ABSTRACT High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterior-superior insula (PSI) may produce analgesic effects. However, the alterations in cortical activity during PSI-rTMS analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by PSI-rTMS. Twenty healthy volunteers (10 females) attended 2 sessions randomized to active or sham rTMS. Experimental pain was induced by capsaicin administered to the forearm for 90 minutes, with pain ratings collected every 5 minutes. Left PSI-rTMS was delivered (10 Hz, 100 pulses per train, 15 trains) ∼50 minutes postcapsaicin administration. Transcranial magnetic stimulation-evoked potentials (TEPs) and thermal sensitivity were assessed at baseline, during capsaicin pain prior to rTMS and after rTMS. Bayesian evidence of reduced pain scores and increased heat pain thresholds were found after active rTMS, with no changes occurring after sham rTMS. Pain (prior to active rTMS) led to an increase in the frontal negative peak ∼45 ms (N45) TEP relative to baseline. After active rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast, after sham rTMS, the N45 peak was increased relative to baseline. We also found that the reduction in pain numerical rating scale scores after active vs sham rTMS was correlated with and partially mediated by decreases in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest that the TEP N45 peak is a potential marker and mediator of both pain and analgesia. This study demonstrates that high-frequency rTMS targeting the posterior-superior insula reduces capsaicin-induced pain and alters cortical activity, with changes in the N45 TMS-evoked potential peak mediating the analgesic effects.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Enrico de Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Jobin K, Campbell C, Schabrun S, Schneider K, Smith A, Debert C. The safety and feasibility of transcranial direct current stimulation combined with conservative treatment for patients with cervicogenic headaches: A double-blinded randomized control study protocol. Contemp Clin Trials Commun 2024; 42:101370. [PMID: 39391228 PMCID: PMC11464253 DOI: 10.1016/j.conctc.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cervicogenic headaches (CGH) are common following concussion and whiplash injuries and significantly reduce patient quality of life. Conservative therapies such as ET (ET) and physiotherapy combined with injection-based therapies are cornerstones of treatment for CGH but have shown limited efficacy. Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has shown promise in treating other chronic pain conditions. The primary aim of this trial is to evaluate the feasibility and safety of tDCS when combined with ET for the treatment of CGH. Methods Adults (aged 18-65), blinded to treatment arm, will be randomized into one of two groups: active tDCS followed by ET or sham tDCS followed by ET. Transcranial direct current stimulation will be applied over M1 three times per week for 6-weeks and ET will be performed daily. The primary outcomes of this trial will be the feasibility and safety of the intervention. Feasibility will be defined as greater than 30 % recruitment, 70 % protocol adherence, and 80 % retention rate. Safety will be defined as no severe adverse events. Secondary exploratory outcomes will assess improvement in pain, strength, function, and quality of life. Conclusions This trial aims to demonstrate the safety and feasibility of tDCS in combination with ET for the treatment of CGH. Cervicogenic headaches can be difficult to treat contributing to significant impairments function and quality of life. Transcranial direct current stimulation is a potential novel treatment to improve health outcomes in these patients. Registration ClinicalTrials.gov-NCT05582616.
Collapse
Affiliation(s)
- K. Jobin
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - C. Campbell
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - S.M. Schabrun
- Department of Physiotherapy, University of Western Ontario, London, Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
| | - K.J. Schneider
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - A. Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - C.T. Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Velickovic Z, Radunovic G. Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions. J Pers Med 2024; 14:662. [PMID: 38929883 PMCID: PMC11204413 DOI: 10.3390/jpm14060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.
Collapse
Affiliation(s)
| | - Goran Radunovic
- Institute of Rheumatology, Resavska 69, 11000 Belgrade, Serbia;
- School of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Balducci T, Garza-Villarreal EA, Valencia A, Aleman A, van Tol MJ. Abnormal functional neurocircuitry underpinning emotional processing in fibromyalgia. Eur Arch Psychiatry Clin Neurosci 2024; 274:151-164. [PMID: 36961564 PMCID: PMC10786973 DOI: 10.1007/s00406-023-01578-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
Fibromyalgia, a condition characterized by chronic pain, is frequently accompanied by emotional disturbances. Here we aimed to study brain activation and functional connectivity (FC) during processing of emotional stimuli in fibromyalgia. Thirty female patients with fibromyalgia and 31 female healthy controls (HC) were included. Psychometric tests were administered to measure alexithymia, affective state, and severity of depressive and anxiety symptoms. Next, participants performed an emotion processing and regulation task during functional magnetic resonance imaging (fMRI). We performed a 2 × 2 ANCOVA to analyze main effects and interactions of the stimuli valence (positive or negative) and group (fibromyalgia or HC) on brain activation. Generalized psychophysiological interaction analysis was used to assess task-dependent FC of brain regions previously associated with emotion processing and fibromyalgia (i.e., hippocampus, amygdala, anterior insula, and pregenual anterior cingulate cortex [pACC]). The left superior lateral occipital cortex showed more activation in fibromyalgia during emotion processing than in HC, irrespective of valence. Moreover, we found an interaction effect (valence x group) in the FC between the left pACC and the precentral and postcentral cortex, and central operculum, and premotor cortex. These results suggest abnormal brain activation and connectivity underlying emotion processing in fibromyalgia, which could help explain the high prevalence of psychopathological symptoms in this condition.
Collapse
Affiliation(s)
- Thania Balducci
- Postgraduate Studies Division of the School of Medicine, Medical, Dental and Health Sciences Program, National Autonomous University of Mexico, Mexico city, Mexico
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, Querétaro, QRO, Mexico.
| | - Alely Valencia
- Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Marie-José van Tol
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Tu Y, Wang J, Li Z, Xiong F, Gao F. Topological alterations in white matter structural networks in fibromyalgia. Neuroradiology 2023; 65:1737-1747. [PMID: 37851020 DOI: 10.1007/s00234-023-03225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Neuroimaging studies employing analyses dependent on regional assumptions and specific neuronal circuits could miss characteristics of whole-brain structural connectivity critical to the pathophysiology of fibromyalgia (FM). This study applied the whole-brain graph-theoretical approach to identify whole-brain structural connectivity disturbances in FM. METHODS This cross-sectional study used probabilistic diffusion tractography and graph theory analysis to evaluate the topological organization of brain white matter networks in 20 patients with FM and 20 healthy controls (HCs). The relationship between brain network metrics and clinical variables was evaluated. RESULTS Compared with HCs, FM patients had lower clustering coefficient, local efficiency, hierarchy, synchronization, and higher normalized characteristic path length. Regionally, patients demonstrated a significant reduction in nodal efficiency and centrality; these regions were mainly located in the prefrontal, temporal cortex, and basal ganglia. The network-based statistical analysis (NBS) identified decreased structural connectivity in a subnetwork of prefrontal cortex, basal ganglia, and thalamus in FM. There was no correlation between network metrics and clinical variables (false discovery rate corrected). CONCLUSIONS The current research demonstrated disrupted topological architecture of white matter networks in FM. Our results suggested compromised neural integration and segregation and reduced structural connectivity in FM.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, China.
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Cuenca-Martínez F, Sempere-Rubio N, Mollà-Casanova S, Muñoz-Gómez E, Fernández-Carnero J, Sánchez-Sabater A, Suso-Martí L. Effects of Repetitive-Transcranial Magnetic Stimulation (rTMS) in Fibromyalgia Syndrome: An Umbrella and Mapping Review. Brain Sci 2023; 13:1059. [PMID: 37508991 PMCID: PMC10377383 DOI: 10.3390/brainsci13071059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The main aim of this study was to assess the effects of repetitive-transcranial magnetic stimulation (rTMS) in patients with fibromyalgia (FMS). METHODS We systematically searched PubMed, PEDro, EMBASE, and CINAHL. Methodological quality was analyzed using the AMSTAR and ROBIS scales, and the strength of evidence was established according to the guidelines advisory committee grading criteria. A total of 11 systematic reviews were included. The assessed variables were pain intensity, depressive symptoms, anxiety, and general health. RESULTS Regarding pain intensity, it seems that high-frequency rTMS significantly reduces pain intensity at a 1-month follow-up when the primary motor cortex (M1) is stimulated. However, we cannot robustly conclude the same for low-frequency protocols. When we look at the combination of high and low-frequency rTMS, there seems to be a significant effect on pain intensity up to 1-week post-intervention, but after that point of follow-up, the results are controversial. Regarding depressive symptoms and anxiety, results showed that the effects of rTMS are almost non-existent. Finally, in regard to general health, results showed that rTMS caused significant post-intervention effects in a robust way. However, the results of the follow-ups are contradictory. CONCLUSIONS The results obtained showed that high-frequency rTMS applied on the M1 showed some effect on the variable of pain intensity with a limited quality of evidence. Overall, rTMS was shown to be effective in improving general health with moderate quality of evidence. Finally, rTMS was not shown to be effective in managing depressive symptoms and anxiety with a limited to moderate quality of evidence. PROSPERO number: This review was previously registered in PROSPERO (CRD42023391032).
Collapse
Affiliation(s)
| | | | | | - Elena Muñoz-Gómez
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Josué Fernández-Carnero
- Department of Physical and Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Grupo de Investigación en Neurociencia Cognitiva, Dolor y Rehabilitación en Ciencias de la Salud (NECODOR), Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | | | - Luis Suso-Martí
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
11
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
12
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci Rep 2022; 12:17135. [PMID: 36224244 PMCID: PMC9556524 DOI: 10.1038/s41598-022-21557-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
MRI-based resting-state functional connectivity (rsFC) has been shown to predict response to pharmacological and non-pharmacological treatments for chronic pain, but not yet for motor cortex transcranial magnetic stimulation (M1-rTMS). Twenty-seven fibromyalgia syndrome (FMS) patients participated in this double-blind, crossover, and sham-controlled study. Ten daily treatments of 10 Hz M1-rTMS were given over 2 weeks. Before treatment series, patients underwent resting-state fMRI and clinical pain evaluation. Significant pain reduction occurred following active, but not sham, M1-rTMS. The following rsFC patterns predicted reductions in clinical pain intensity after the active treatment: weaker rsFC of the default-mode network with the middle frontal gyrus (r = 0.76, p < 0.001), the executive control network with the rostro-medial prefrontal cortex (r = 0.80, p < 0.001), the thalamus with the middle frontal gyrus (r = 0.82, p < 0.001), and the pregenual anterior cingulate cortex with the inferior parietal lobule (r = 0.79, p < 0.001); and stronger rsFC of the anterior insula with the angular gyrus (r = - 0.81, p < 0.001). The above regions process the attentional and emotional aspects of pain intensity; serve as components of the resting-state networks; are modulated by rTMS; and are altered in FMS. Therefore, we suggest that in FMS, the weaker pre-existing interplay between pain-related brain regions and networks, the larger the pain relief resulting from M1-rTMS.
Collapse
Affiliation(s)
- Yuval Argaman
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- grid.413731.30000 0000 9950 8111Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- grid.18098.380000 0004 1937 0562Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|