1
|
Li Z, Kitov PI, Kitova EN, Mozenah F, Rodrigues E, Chapla DG, Moremen KW, Macauley MS, Klassen JS. CUPRA-ZYME: An Assay for Measuring Carbohydrate-Active Enzyme Activities, Pathways, and Substrate Specificities. Anal Chem 2020; 92:3228-3236. [PMID: 31961140 DOI: 10.1021/acs.analchem.9b05007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrate-Active enZymes (CAZymes) are involved in the synthesis, degradation, and modification of carbohydrates. They play critical roles in diverse physiological and pathophysiological processes, have important industrial and biotechnological applications, are important drug targets, and represent promising biomarkers for the diagnosis of a variety of diseases. Measurements of their activities, catalytic pathway, and substrate specificities are essential to a comprehensive understanding of the biological functions of CAZymes and exploiting these enzymes for industrial and biomedical applications. For glycosyl hydrolases a variety of sensitive and quantitative spectrophotometric techniques are available. However, measuring the activity of glycosyltransferases is considerably more challenging. Here, we introduce CUPRA-ZYME, a versatile and quantitative electrospray ionization mass spectrometry (ESI-MS) assay for measuring the kinetic parameters of CAZymes, monitoring reaction pathways, and profiling substrate specificities. The method employs the recently developed competitive universal proxy receptor assay (CUPRA), implemented in a time-resolved manner. Measurements of the hydrolysis kinetics of CUPRA substrates containing ganglioside oligosaccharides by the glycosyl hydrolase human neuraminidase 3 served to validate the reliability of kinetic parameters measured by CUPRA-ZYME and highlight its use in establishing catalytic pathways. Applications to libraries of substrates demonstrate the potential of the assay for quantitative profiling of the substrate specificities glycosidases and glycosyltransferases. Finally, we show how the comparison of the reactivity of CUPRA substrates and glycan substrates present on glycoproteins, measured simultaneously, affords a unique opportunity to quantitatively study how the structure and protein environment of natural glycoconjugate substrates influences CAZyme activity.
Collapse
Affiliation(s)
- Zhixiong Li
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Pavel I Kitov
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Elena N Kitova
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Fahima Mozenah
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Emily Rodrigues
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Biochemistry and Molecular Biology , University of Georgia , Athens , Georgia 30602 , United States
| | - Matthew S Macauley
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2.,Department of Medical Microbiology and Immunology , University of Alberta , Edmonton , Alberta , Canada T6G 2E1
| | - John S Klassen
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| |
Collapse
|
2
|
Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019; 24:molecules24234309. [PMID: 31779114 PMCID: PMC6930586 DOI: 10.3390/molecules24234309] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
In this review, a general introduction to fragment-based drug design and the underlying concepts is given. General considerations and methodologies ranging from library selection/construction over biophysical screening and evaluation methods to in-depth hit qualification and subsequent optimization strategies are discussed. These principles can be generally applied to most classes of drug targets. The examples given for fragment growing, merging, and linking strategies at the end of the review are set in the fields of enzyme-inhibitor design and macromolecule–macromolecule interaction inhibition. Building upon the foundation of fragment-based drug discovery (FBDD) and its methodologies, we also highlight a few new trends in FBDD.
Collapse
Affiliation(s)
- Philine Kirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Alwin M. Hartman
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-988-062-031
| |
Collapse
|
3
|
Jiang S, Gilpin ME, Attia M, Ting YL, Berti PJ. Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry 2011; 50:2205-12. [PMID: 21294548 DOI: 10.1021/bi1017842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MurAs (enolpyruvyl-UDP-GlcNAc synthases) from pathogenic bacteria such as Borrelia burgdorferi (Lyme disease) and tuberculosis are fosfomycin resistant because an Asp-for-Cys substitution prevents them from being alkylated by this epoxide antibiotic. Previous attempts to characterize naturally Asp-containing MurAs have resulted in no protein or no activity. We have expressed and characterized His-tagged Lyme disease MurA (Bb_MurA(H6)). The protein was most soluble at high salt concentrations but maximally active around physiological ionic strength. The steady-state kinetic parameters at pH 7 were k(cat) = 1.07 ± 0.03 s(-1), K(M,PEP) = 89 ± 12 μM, and K(M,UDP-GlcNAc) = 45 ± 7 μM. Mutating the active site Asp to Cys, D116C, caused a 21-fold decrease in k(cat) and rendered the enzyme fosfomycin sensitive. The pH profile of k(cat) was bell-shaped and centered around pH 5.3 for Bb_MurA(H6), with pK(a1) = 3.8 ± 0.2 and pK(a2) = 7.4 ± 0.2. There was little change in pK(a1) with the D116C mutant, 3.5 ± 0.3, but pK(a2) shifted to >11. This demonstrated that the pK(a2) of 7.4 was due to D116, almost 3 pH units above an unperturbed carboxylate, and that it must be protonated for activity. This supports D116's proposed role as a general acid/base catalyst. As fosfomycin does not react with simple thiols, nor most protein thiols, the reactivity of D116C with fosfomycin, combined with the strongly perturbed pK(a2) for D116, strongly implies an unusual active site environment and a chemical role in catalysis for Asp/Cys. There is also good evidence for C115 having a role in product release. Both roles may be operative for both Asp- and Cys-containing MurAs.
Collapse
Affiliation(s)
- Shan Jiang
- Chemical Biology Graduate Program, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | | | | | | | | |
Collapse
|
4
|
Kristan K, Kotnik M, Oblak M, Urleb U. New high-throughput fluorimetric assay for discovering inhibitors of UDP-N-acetylmuramyl-L-alanine: D-glutamate (MurD) ligase. ACTA ACUST UNITED AC 2009; 14:412-8. [PMID: 19403924 DOI: 10.1177/1087057109332597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel assay for monitoring the activity of the bacterial enzyme UDP-N-acetylmuramyl-L-alanine:D-glutamate ligase (MurD ligase) is presented. MurD, which belongs to an enzyme family of Mur ligases, is essential for the synthesis of bacterial peptidoglycan and therefore represents an attractive target for the discovery of novel antibacterial agents. The inhibition assay described in this article is amenable to high-throughput screening. It is based on the detection of the accumulation of adenosine 5'-diphosphate (ADP), a product of the reaction catalyzed by MurD ligase, by conversion to a fluorescent signal via a coupled enzyme system, using the ADP Quest assay kit from DiscoveRx. The novel assay has been validated by obtaining KM,app values for substrates D-Glu, UDP- N-acetylmuramyl-L-alanine (UMA) and ATP that are in agreement with the data reported in the literature. A counterscreen assay was introduced to eliminate false positives, and some of the known MurD inhibitors have been retested to compare the data measured with different methods. Moreover, a focused library of around 1000 compounds was screened for the inhibition of MurD to assess the performance and robustness of the assay. Finally, a novel MurD inhibitor belonging to a new structural class, with an IC50 value of 105 microM, was discovered.
Collapse
Affiliation(s)
- Katja Kristan
- Drug Discovery, Lek Pharmaceuticals d.d., Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
5
|
Mansour TS, Caufield CE, Rasmussen B, Chopra R, Krishnamurthy G, Morris KM, Svenson K, Bard J, Smeltzer C, Naughton S, Antane S, Yang Y, Severin A, Quagliato D, Petersen PJ, Singh G. Naphthyl tetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. ChemMedChem 2008; 2:1414-7. [PMID: 17600795 DOI: 10.1002/cmdc.200700094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tarek S Mansour
- Medicinal Chemistry, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein–protein interactions. Curr Opin Chem Biol 2007; 11:511-7. [DOI: 10.1016/j.cbpa.2007.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/08/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
|
7
|
de Boer AR, Lingeman H, Niessen WM, Irth H. Mass spectrometry-based biochemical assays for enzyme-inhibitor screening. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2007.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
|
9
|
Deng G, Sanyal G. Applications of mass spectrometry in early stages of target based drug discovery. J Pharm Biomed Anal 2006; 40:528-38. [PMID: 16256286 DOI: 10.1016/j.jpba.2005.08.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/30/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Mass spectrometry (MS) has been applied to drug discovery for many years. With the advent of new ionization techniques, MS has emerged as an important analytical tool in identification and characterization of protein targets, structure elucidation of synthetic compounds, and early drug metabolism and pharmacokinetics studies. Two MS-based strategies, function-based and affinity-based, have been employed in recent years for screening and evaluation of compounds. In the function-based approach, the effects of compounds on the biological activity of a target molecule are measured. In the affinity-based approach, compounds are screened based on their binding affinities to target molecules. The interaction between targets and compounds can be directly evaluated by monitoring the formation of non-covalent target-ligand complexes (direct detection) or indirectly evaluated by detecting the compounds after separating bound compounds from unbound (indirect detection). Various techniques including high performance liquid chromatography (HPLC)-MS, size exclusion chromatography (SEC)-MS, frontal affinity chromatography (FAC)-MS and desorption/ionization on silicon (DIOS)-MS can be applied. The recent advances, relative advantages, and limitations of each MS-based method as a tool in compound screening and compound evaluation in the early stages of drug discovery are discussed in this review.
Collapse
Affiliation(s)
- Gejing Deng
- Department of Biochemistry, Infection Drug Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | |
Collapse
|
10
|
Liesener A, Karst U. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 2005; 382:1451-64. [PMID: 16007447 DOI: 10.1007/s00216-005-3305-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
This review highlights recent advances in the application of electrospray ionisation and matrix-assisted laser desorption/ionisation mass spectrometry (MS) to study enzymatic reactions. Several assay schemes for different fields of application are presented. The employment of MS as a means of detection in pre-steady-state kinetic studies by rapid-mixing direct analysis and rapid-mixing quench flow techniques is discussed. Several steady-state kinetic studies of a broad range of different enzymatic systems are presented as well as enzyme inhibition studies for various target enzymes. As a promising new development multiplex assays, which monitor the conversion of several substrates simultaneously in one experiment, are described. This assay type has been used for competition studies, enzymatic activity screenings and for diagnostic purposes in clinical chemistry. Generally, it can be concluded that mass spectrometry offers an intriguing alternative as detection methodology in enzymatic bioassays. Its applicability for the monitoring the conversion of naturally occurring substrates and its overall versatility make MS an especially promising tool for the study of enzyme-catalysed processes.
Collapse
Affiliation(s)
- André Liesener
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500, AE Enschede, The Netherlands
| | | |
Collapse
|