1
|
Duan D, Long C, Zhang H. An authentic assessment method for cordyceps sinensis. J Pharm Biomed Anal 2024; 239:115879. [PMID: 38048742 DOI: 10.1016/j.jpba.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Cordyceps Sinensis, renowned for its diverse pharmacological properties and the rarity of its natural species, faces significant challenges due to rampant adulteration by counterfeit products. Consequently, there is a crucial need to reliably identify Cordyceps species to ensure their quality and efficacy. While current analytical techniques predominantly rely on LC-MS, there remains a notable deficiency and substantial demand for the development of a unified, reproducible, and fast method suitable for commercial applications. In this study, we employed a cost-effective and straightforward approach utilizing headspace GC-MS to authenticate Cordyceps sinensis. This method enables the comprehensive analysis of the chemical profile, facilitating the identification of quality and authenticity in Cordyceps samples. Through a comparative analysis of the chemical profiles of seven authentic Cordyceps samples with seven other Cordyceps samples, we propose a Quality Assessment System for Authentic Cordyceps, encompassing the following criteria: 1) the presence of 29 compounds commonly found in authentic Cordyceps within the chemical profile, and 2) the area ratio of 3-methylbutanal to 2-methylbutanal falling within the range of 2.09-3.01. This method exhibits considerable promise as a standardized, reproducible, and expeditious technique for the quality assessment and authentication of Cordyceps.
Collapse
Affiliation(s)
- Di Duan
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou 510300, China.
| | - Chentao Long
- Molecular Info-Tech Co. Ltd, Guangzhou 510300, China
| | - Huajun Zhang
- Molecular Info-Tech Co. Ltd, Guangzhou 510300, China; Molecular Info-Tech Joint Lab, A⁎STAR, 117674, Singapore.
| |
Collapse
|
2
|
Identification of Ophiocordyceps sinensis and Its Artificially Cultured Ophiocordyceps Mycelia by Ultra-Performance Liquid Chromatography/Orbitrap Fusion Mass Spectrometry and Chemometrics. Molecules 2018; 23:molecules23051013. [PMID: 29701667 PMCID: PMC6100002 DOI: 10.3390/molecules23051013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
Since the cost of Ophiocordyceps sinensis, an important fungal drug used in Chinese medicine, has increased dramatically, and the counterfeits may have adverse health effects, a rapid and precise marker using the peptide mass spectrometry identification system could significantly enhance the regulatory capacity. In this study, we determined the marker peptides in the digested mixtures of fungal proteins in wild O. sinensis fruiting bodies and various commercially available mycelium fermented powders using ultra-performance liquid chromatography/Orbitrap Fusion mass spectrometry coupled with chemometrics. The results indicated the following marker peptides: TLLEAIDSIEPPK (m/z 713.39) was identified in the wild O. sinensis fruiting body, AVLSDAITLVR (m/z 579.34) was detected in the fermented O. sinensis mycelium powder, FAELLEK (m/z 849.47) was found in the fermented Ophiocordyceps mycelium powder, LESVVTSFTK (m/z 555.80) was discovered in the artificial Ophiocordyceps mycelium powder, and VPSSAVLR (m/z 414.75) was observed in O. mortierella mycelium powder. In order to verify the specificity and applicability of the method, the five marker peptides were synthesized and tested on all samples. All in all, to the best of our knowledge, this is the first time that mass spectrometry has been employed to detect the marker peptides of O.sinensis and its related products.
Collapse
|
3
|
Feng K, Wang LY, Liao DJ, Lu XP, Hu DJ, Liang X, Zhao J, Mo ZY, Li SP. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis. Mycology 2017; 8:231-258. [PMID: 30123644 PMCID: PMC6059060 DOI: 10.1080/21501203.2017.1365314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
The fruiting body formation mechanisms of Cordyceps sinensis are still unclear. To explore the mechanisms, proteins potentially related to the fruiting body formation, proteins from fruiting bodies, and mycelia of Cordyceps species were assessed by using two-dimensional fluorescence difference gel electrophoresis, and the differential expression proteins were identified by matrix-assisted laser desorption/ionisation tandem time of flight mass spectrometry. The results showed that 198 differential expression proteins (252 protein spots) were identified during the fruiting body formation of Cordyceps species, and 24 of them involved in fruiting body development in both C. sinensis and other microorganisms. Especially, enolase and malate dehydrogenase were first found to play an important role in fruiting body development in macro-fungus. The results implied that cAMP signal pathway involved in fruiting body development of C. sinensis, meanwhile glycometabolism, protein metabolism, energy metabolism, and cell reconstruction were more active during fruiting body development. It has become evident that fruiting body formation of C. sinensis is a highly complex differentiation process and requires precise integration of a number of fundamental biological processes. Although the fruiting body formation mechanisms for all these activities remain to be further elucidated, the possible mechanism provides insights into the culture of C. sinensis.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Lan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, China
| | - Dong-Jiang Liao
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin-Peng Lu
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | | | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zi-Yao Mo
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
4
|
Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis
Fungus UM01. J Food Sci 2016; 81:C2167-74. [DOI: 10.1111/1750-3841.13407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/21/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022]
|
5
|
Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Authentication of Cordyceps sinensis by DNA Analyses: Comparison of ITS Sequence Analysis and RAPD-Derived Molecular Markers. Molecules 2015; 20:22454-62. [PMID: 26694332 PMCID: PMC6332357 DOI: 10.3390/molecules201219861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022] Open
Abstract
Cordyceps sinensis is an endoparasitic fungus widely used as a tonic and medicinal food in the practice of traditional Chinese medicine (TCM). In historical usage, Cordyceps specifically is referring to the species of C. sinensis. However, a number of closely related species are named themselves as Cordyceps, and they are sold commonly as C. sinensis. The substitutes and adulterants of C. sinensis are often introduced either intentionally or accidentally in the herbal market, which seriously affects the therapeutic effects or even leads to life-threatening poisoning. Here, we aim to identify Cordyceps by DNA sequencing technology. Two different DNA-based approaches were compared. The internal transcribed spacer (ITS) sequences and the random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) were developed here to authenticate different species of Cordyceps. Both approaches generally enabled discrimination of C. sinensis from others. The application of the two methods, supporting each other, increases the security of identification. For better reproducibility and faster analysis, the SCAR markers derived from the RAPD results provide a new method for quick authentication of Cordyceps.
Collapse
|
7
|
Zong SY, Han H, Wang B, Li N, Dong TTX, Zhang T, Tsim KWK. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps sinensis by UHPLC-ESI-MS/MS. Molecules 2015; 20:21816-25. [PMID: 26690105 PMCID: PMC6332315 DOI: 10.3390/molecules201219807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 12/02/2022] Open
Abstract
A reliable ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLCTM HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%–117.3%, with RSD < 6.18%. The developed UHPLC–ESI–MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329–2057 µg/g.
Collapse
Affiliation(s)
- Shi-Yu Zong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Han Han
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Ning Li
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Tina Ting-Xia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
- Experimental Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
8
|
Wang LY, Cheong KL, Wu DT, Meng LZ, Zhao J, Li SP. Fermentation optimization for the production of bioactive polysaccharides from Cordyceps sinensis fungus UM01. Int J Biol Macromol 2015; 79:180-5. [DOI: 10.1016/j.ijbiomac.2015.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/13/2015] [Accepted: 04/08/2015] [Indexed: 12/24/2022]
|
9
|
Meng LZ, Feng K, Wang LY, Cheong KL, Nie H, Zhao J, Li SP. Activation of mouse macrophages and dendritic cells induced by polysaccharides from a novel Cordyceps sinensis fungus UM01. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
Xin GZ, Hu B, Shi ZQ, Lam YC, Dong TTX, Li P, Yao ZP, Tsim KW. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry and a strategy to differentiate the bulbs of Fritillaria. Anal Chim Acta 2014; 820:84-91. [DOI: 10.1016/j.aca.2014.02.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/16/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022]
|
11
|
Authentication of Bulbus Fritillariae Cirrhosae by RAPD-derived DNA markers. Molecules 2014; 19:3450-9. [PMID: 24658569 PMCID: PMC6271880 DOI: 10.3390/molecules19033450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022] Open
Abstract
Bulbus Fritillariae is the most commonly used antitussive herb in China. Eleven species of Fritillaria are recorded as Bulbus Fritillariae in the Chinese Pharmacopoeia. Bulbus Fritillariae Cirrhosae is a group of six Fritillaria species with higher efficiency and lower toxicity derived mainly from wild sources. Because of their higher market price, five other Fritillaria species are often sold deceptively as Bulbus Fritillariae Cirrhosae in the herbal market. To ensure the efficacy and safety of medicinal herbs, the authentication of botanical resources is the first step in quality control. Here, a DNA based identification method was developed to authenticate the commercial sources of Bulbus Fritillariae Cirrhosae. A putative DNA marker (0.65 kb) specific for Bulbus Fritillariae Cirrhosae was identified using the Random Amplified Polymorphic DNA (RAPD) technique. A DNA marker representing a Sequence Characterized Amplified Region (SCAR) was developed from a RAPD amplicon. The SCAR marker was successfully applied to differentiate Bulbus Fritillariae Cirrhosae from different species of Fritillaria. Additionally, the SCAR marker was also useful in identifying the commercial samples of Bulbus Fritillariae Cirrhosae. Our results indicated that the RAPD-SCAR method was rapid, accurate and applicable in identifying Bulbus Fritillariae Cirrhosae at the DNA level.
Collapse
|
12
|
Zhao J, Xie J, Wang L, Li S. Advanced development in chemical analysis of Cordyceps. J Pharm Biomed Anal 2014; 87:271-89. [DOI: 10.1016/j.jpba.2013.04.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
|
13
|
Meng LZ, Lin BQ, Wang B, Feng K, Hu DJ, Wang LY, Cheong KL, Zhao J, Li SP. Mycelia extracts of fungal strains isolated from Cordyceps sinensis differently enhance the function of RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:818-825. [PMID: 23707329 DOI: 10.1016/j.jep.2013.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/16/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps sinensis, an entomogenous fungus used in traditional Chinese medicine with multiple pharmacological activities. However, its usage has been limited due to the high price and short supply. Isolate of fungi strains from natural Cordyceps sinensis to achieve a large-scale production by fermentation is an alternative choice. The aim of this study was to investigate and compare the effects of mycelia extracts of different fungal stains isolated from natural Cordyceps sinensis on macrophage functions in vitro. MATERIALS AND METHODS Macrophages' proliferation, phagocytosis, nitric oxide (NO) production, cytokines secretion, iNOS, NF-κB p65 activation and translocation were investigated by the MTT assay, flow cytometry assay, Griess reagent method, ELISA, western blot and immunostaining assay, respectively. RESULTS The results showed that the effects of cultured Cordyceps mycelia of different fungal strains isolated from natural Cordyceps sinensis on macrophages greatly variant. Among 17 Cordyceps aqueous extracts, only five extracts (UM01, QH11, BNQM, GNCC and DCXC) could significantly increase cell proliferation and NO production of RAW 264.7 mouse macrophages. Moreover, the five extracts, especially UM01 and QH11, significantly enhanced phagocytosis and promoted cytokines release of macrophages. Polysaccharides in cultured UM01 mycelia were found to be the main immune stimulating compounds. CONCLUSIONS The variation of biological effects of fermented mycelia of different fungal strains from natural Cordyceps sinensis may be derived from their chemical diversity, especially polysaccharides, which need further study in future.
Collapse
Affiliation(s)
- Lan-Zhen Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao ( Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013; 3:16-32. [PMID: 24716152 PMCID: PMC3924981 DOI: 10.4103/2225-4110.106538] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The caterpillar fungus Ophiocordyceps sinensis (syn.Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either "yartsa gunbu" or "DongChongXiaCao ( Dōng Chóng Xià Cǎo)" ("winter worm-summer grass"), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as "soft gold" in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of "DongChongXiaCao" is different for O. sinensis, Cordyceps spp., and Cordyceps sp. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1(st), 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name "H. sinensis" has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis.
Collapse
Affiliation(s)
- Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan
| | - Chienyan Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan
| | - Fang-Yi Lin
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
15
|
Skoda SR, Figarola JL, Pornkulwat S, Foster JE. Inter- and intraspecific identification of the screwworm, Cochliomyia hominivorax, using random amplified polymorphic DNA-polymerase chain reaction. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:76. [PMID: 24219502 PMCID: PMC3835031 DOI: 10.1673/031.013.7601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/09/2012] [Indexed: 06/02/2023]
Abstract
The screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), is one of the most devastating arthropod pests of livestock in the Western Hemisphere. Early instars are very difficult to distinguish morphologically from several closely related blow fly species. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers were developed for identifying C. hominivorax from other wound inhabiting species. Forty decameric primers were screened; nine showed clear reproducible RAPD profiles suitable for distinguishing all life stages of C. hominivorax from 7 other species, including C. macellaria (Fabricius). The results from RAPD-PCR with field-collected samples of unknown first instars agreed with morphological identification that the samples were not C. hominivorax. Three different primers showed DNA polymorphisms (intraspecific) for samples originating from Mexico, Costa Rica, Panama, Jamaica, and Brazil. Therefore, RAPD-PCR may be useful for determining the geographic origin of C. hominivorax samples. Comparing products from these primers, used with known and unknown screwworm samples from an outbreak in Mexico, clearly showed that the outbreak did not originate from the mass rearing facility. Accurate identification of suspected C. hominivorax samples is possible using RAPD-PCR. Further development to identify the geographic origin of samples would benefit the ongoing surveillance programs against C. hominivorax and the decision process during suspected outbreaks of this important pest.
Collapse
Affiliation(s)
- Steven R. Skoda
- USDA-ARS-KBUSLIRL-Screwworm Research Unit, 2700 Fredericksburg Rd., Kerrville, TX 78028
| | - James L. Figarola
- Beckman Research Institute of the City of Hope National Center, Duarte, California 91010
| | | | - John E. Foster
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, USA 68583-0816
| |
Collapse
|
16
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013. [DOI: 10.1016/s2225-4110(16)30164-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Li XT, Li HC, Li CB, Dou DQ, Gao MB. Protective Effects on Mitochondria and Anti-Aging Activity of Polysaccharides from Cultivated Fruiting Bodies of Cordyceps militaris. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:1093-106. [DOI: 10.1142/s0192415x10008494] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cordyceps militaris (L.) Link is an entomopathogenic fungus parasitic to Lepidoptera larvae, and is widely used as a folk tonic or invigorant for longevity in China. Although C. militaris has been used in traditional Chinese medicine for millennia, there is still a lack convincing evidence for its anti-aging activities. This study was performed to investigate the effects of polysaccharides from cultivated fruiting bodies of C. militaris (CMP) on mitochondrial injury, antioxidation and anti-aging activity. Fruiting bodies of C. militaris were cultivated artificially under optimized conditions. The spectrophotometric method was used to measure thiobarbituric acid reactive substances (TBARS), mitochondrial swelling, and activities of scavenging superoxide anions in vitro. D-galactose (100 mg/kg/day) was injected subcutaneously into back of the neck of mice for 7 weeks to induce an aging model. The effects of CMP on the activities of catalase (CAT), surperoxide dismutase (SOD), glutathione peroxidase (GPx) and anti-hydroxyl radicals were assayed in vivo using commercial monitoring kits. The results showed that CMP could inhibit mitochondrial injury and swelling induced by Fe2+ -L-Cysteine in a concentration- dependent manner and it also had a significant superoxide anion scavenging effect. Moreover, the activities of CAT, SOD, GPx and anti-hydroxyl radicals in mice liver were increased significantly by CMP. These results indicate that CMP protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial swelling, and increasing the activities of antioxidases. Therefore, CMP may have pharmaceutical values for mitochondrial protection and anti-aging. CMP was the major bioactive component in C. militaris.
Collapse
Affiliation(s)
- Xing-Tai Li
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| | - Hong-Cheng Li
- Research and Development Department, GeneScience Pharmaceuticals Co., Ltd., High-Tech Development Zone, Changchun 130012, China
| | - Chun-Bin Li
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| | - De-Qiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Bo Gao
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| |
Collapse
|
18
|
Xu D, Pan L, Zhao H, Zhao M, Sun J, Liu D. Breeding and identification of novel koji molds with high activity of acid protease by genome recombination between Aspergillus oryzae and Aspergillus niger. J Ind Microbiol Biotechnol 2011; 38:1255-1265. [PMID: 21107641 DOI: 10.1007/s10295-010-0904-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/08/2010] [Indexed: 11/27/2022]
Abstract
Acid protease is essential for degradation of proteins during soy sauce fermentation. To breed more suitable koji molds with high activity of acid protease, interspecific genome recombination between A. oryzae and A. niger was performed. Through stabilization with d-camphor and haploidization with benomyl, several stable fusants with higher activity of acid protease were obtained, showing different degrees of improvement in acid protease activity compared with the parental strain A. oryzae. In addition, analyses of mycelial morphology, expression profiles of extracellular proteins, esterase isoenzyme profiles, and random amplified polymorphic DNA (RAPD) were applied to identify the fusants through their phenotypic and genetic relationships. Morphology analysis of the mycelial shape of fusants indicated a phenotype intermediate between A. oryzae and A. niger. The profiles of extracellular proteins and esterase isoenzyme electrophoresis showed the occurrence of genome recombination during or after protoplast fusion. The dendrogram constructed from RAPD data revealed great heterogeneity, and genetic dissimilarity indices showed there were considerable differences between the fusants and their parental strains. This investigation suggests that genome recombination is a powerful tool for improvement of food-grade industrial strains. Furthermore, the presented strain improvement procedure will be applicable for widespread use for other industrial strains.
Collapse
Affiliation(s)
- Defeng Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|