1
|
Zhang W, Cai S, Luan W, Ding M, Di L. Integrated serum pharmacochemistry, network pharmacology and experimental verification to explore the mechanism of Aconiti Lateralis Radix Praeparata in treatment of lung cancer. J Pharm Biomed Anal 2025; 252:116472. [PMID: 39278160 DOI: 10.1016/j.jpba.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Aconiti Lateralis Radix Praeparata (Fuzi) is a traditional Chinese medicine (TCM) widely used in treating cancer. Our formerly investigations confirmed the anti-lung cancer efficacy of Fuzi, but systematic analysis of the ingredients of Fuzi absorbed into serum and the corresponding molecular mechanism in treating lung cancer remained unknown. In this work, UPLC-Q-TOF-MS was applied to detect the ingredients of Fuzi in rat serum. Next, the possible targets and key pathways of the components absorbed into serum of Fuzi were predicted by network pharmacology. Then, the binding activity of components and potential targets were performed by molecular docking. Afterwards, the proliferation, mitochondrial membrane potential (MMP), apoptosis and reactive oxygen species (ROS) of lung cancer cells after treatment with Fuzi-containing serum were determined by MTT assay, JC-1 fluorescent probe, Annexin V-FITC/PI double staining and DCFH-DA respectively. Finally, the predicted target was further validated with qRT-PCR. In total, identification of 20 components of Fuzi derived from rat serum were achieved. The prediction of network pharmacology indicated that these compounds might exert their therapeutic effects by modulating mTOR. The findings from molecular docking proved that fuziline, songorine, napelline and hypaconitine exhibited binding potential with the mTOR. Cancer cell experiments revealed that the Fuzi-containing serum inhibited cell proliferation, induced apoptosis, reduced MMP and increased ROS. Additionally, Fuzi-containing serum significantly reduced the mRNA expression of mTOR. This study revealed that fuziline, songorine, napelline and hypaconitine were the main ingredients of Fuzi absorbed into serum. Furthermore, Fuzi-containing serum demonstrated inhibitory effects on the proliferation of lung cancer cells and induced the apoptosis. Combined with the results of network pharmacology, molecular docking and biological verification, Fuzi-containing serum might exert its anti-lung cancer effect by inhibiting mTOR. This study would provide a deeper understanding of Fuzi in treating lung cancer and offer a scientific reference for its clinical utilization.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, Nanjing 210023, China.
| | - Shuhui Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, Nanjing 210023, China
| | - Wenhao Luan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, Nanjing 210023, China
| | - Menglei Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Kunshan Hospital of Chinese Medicine, Suzhou China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhou Y, Qu C, Yan H, Chu T, Wu J, Kang Q, Peng C, Wang Y, Tan Y. Unlocking the hidden potential: Enhancing the utilization of stems and leaves through metabolite analysis and toxicity assessment of various parts of Aconitum carmichaelii. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117693. [PMID: 38176669 DOI: 10.1016/j.jep.2023.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii is widely used in traditional Chinese medicine clinics as a bulk medicinal material. It has been used in China for more than two thousand years. Nevertheless, the stems and leaves of this plant are usually discarded as non-medicinal parts, even though they have a large biomass and exhibit therapeutic properties. Thus, it is crucial to investigate metabolites of different parts of Aconitum carmichaelii and explore the relationship between metabolites and toxicity to unleash the utilization potential of the stems and leaves. AIM OF THE STUDY Using plant metabolomics, we aim to correlate different metabolites in various parts of Aconitum carmichaelii with toxicity, thereby screening for toxicity markers. This endeavor seeks to offer valuable insights for the development of Aconitum carmichaelii stem and leaf-based applications. MATERIALS AND METHODS UHPLC-Q-Orbitrap MS/MS-based plant metabolomics was employed to analyze metabolites of the different parts of Aconitum carmichaelii. The cardiotoxicity and hepatotoxicity of the extracts from different parts of Aconitum carmichaelii were also investigated using zebrafish as animal model. Toxicity markers were subsequently identified by correlating toxicity with metabolites. RESULTS A total of 113 alkaloids were identified from the extracts of various parts of Aconitum carmichaelii, with 64 different metabolites in stems and leaves compared to daughter root (Fuzi), and 21 different metabolites in stems and leaves compared to mother root (Wutou). The content of aporphine alkaloids in the stems and leaves of Aconitum carmichaelii is higher than that in the medicinal parts, while the content of the diester-diterpenoid alkaloids is lower. Additionally, the medicinal parts of Aconitum carmichaelii exhibited cardiotoxicity and hepatotoxicity, while the stems and leaves have no obvious toxicity. Finally, through correlation analysis and animal experimental verification, mesaconitine, deoxyaconitine, and hypaconitine were used as toxicity markers. CONCLUSION Given the low toxicity of the stems and leaves and the potential efficacy of aporphine alkaloids, the stems and leaves of Aconitum carmichaelii hold promise as a valuable medicinal resource warranting further development.
Collapse
Affiliation(s)
- Yinlin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongling Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianzhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinzhao Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zhang YY, Yao YD, Cheng QQ, Huang YF, Zhou H. Establishment of a High Content Image Platform to Measure NF-κB Nuclear Translocation in LPS-Induced RAW264.7 Macrophages for Screening Anti-inflammatory Drug Candidates. Curr Drug Metab 2022; 23:394-414. [PMID: 35410593 DOI: 10.2174/1389200223666220411121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND High content image (HCI), an automatic imaging and analysis system, provides a fast drug screening method by detecting the subcellular distribution of protein in intact cells. OBJECTIVE This study established the first standardized HCI platform for lipopolysaccharide (LPS)-induced RAW264.7 macrophages to screen anti-inflammatory compounds by measuring nuclear factor-κB (NF-κB) nuclear translocation. METHOD The influence of the cell passages, cell density, LPS induction time and concentration, antibody dilution, serum, dimethyl sulfoxide and analysis parameters on NF-κB nuclear translocation and HCI data quality was optimized. The BAY-11-7085, the positive control for inhibiting NF-κB and Western blot assay were separately employed to verify the stability and reliability of the platform. Lastly, the effect of BHA on NO release, iNOS expression, IL-1β, IL-6, and TNF-α mRNA in LPS-induced RAW264.7 cells was detected. RESULTS The optimal conditions for measuring NF-κB translocation in LPS-induced RAW264.7 cells by HCI were established. Cells that do not exceed 22 passages were seeded at a density of 10 k cells/well and pretreated with compounds following 200 ng/mL LPS for 40 min. Parameters including nuclear area of 65 μm2, cell area of 80 μm2, collar of 0.9 μm and sensitivity of 25% were recommended for image segmentation algorithms in the analysis workstation. Benzoylhypaconine from aconite was screened for the first time as an anti-inflammatory candidate by the established HCI platform. The inhibitory effect of benzoylhypaconine on NF-κB translocation was verified by Western blot. Furthermore, benzoylhypaconine reduced the release of NO, inhibited the expression of iNOS, decreased the mRNA levels of IL-1β, IL-6, and TNF-α. CONCLUSION The established HCI platform could be applied to screen anti-inflammatory compounds by measuring the NF-κB nuclear translocation in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Qi-Qing Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yu-Feng Huang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, P.R. China
| |
Collapse
|
4
|
Wu X, Liu Q, Chen D, Qin W, Lu B, Bi Q, Wang Z, Jia Y, Tan N. Identification of quality control markers in Suhuang antitussive capsule based on HPLC-PDA fingerprint and anti-inflammatory screening. J Pharm Biomed Anal 2019; 180:113053. [PMID: 31901736 DOI: 10.1016/j.jpba.2019.113053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Suhuang antitussive capsule (SH), one of traditional Chinese patent medicines, has been widely used for treating cough variant asthma and postinfectious cough in clinic. The objective of this work is to identify the characteristic and active ingredients as the quality control markers for SH based on high performance liquid chromatography with photodiode array detector (HPLC-PDA) fingerprint and screening of anti-inflammatory components. Similarity analysis (SA), hierarchical clustering analysis (HCA) and principal component analysis (PCA) were used to evaluate 16 different batches of SH. 13 compounds accounting for 36% of the total components in the fingerprint were identified and semi-quantitatively analyzed, which anti-inflammatory activity was tested with the in vitro assay. The results showed that the established chemical fingerprint could clearly distinguish different batches of SH by SA, HCA, and PCA analysis. Furthermore, four known compounds (chlorogenic acid, schisandrin, angeloylgomisin H and praeruptorin A) were screened out to be the most discriminant variables, which could be applied to quality control of SH by quantitative analysis. The semi-quantitative results showed that six compounds were major components, i.e. arctiin (10.28 ± 3.18 mg/g), ephedrine (9.26 ± 1.58 mg/g), schisandrin (3.09 ± 0.83 mg/g), pseudoephedrine (2.34 ± 1.04 mg/g), schisandrin B (1.48 ± 0.16 mg/g), and 1-caffeoylquinic acid (1.36 ± 0.42 mg/g). The anti-inflammatory results showed that SH extract, praeruptorin A, schisandrin, arctigenin and pseudoephedrine could significantly inhibit inflammatory mediator NO production in LPS-stimulated RAW264.7 macrophages. These findings indicated that praeruptorin A, schisandrin, arctiin and pseudoephedrine could be proposed as the quality control markers for SH.
Collapse
Affiliation(s)
- Xingdong Wu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qinyan Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dong Chen
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, 102206, PR China
| | - Weiwei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Bingyun Lu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qirui Bi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yuning Jia
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, 102206, PR China; Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Gao W, Liu XG, Liu L, Li P, Yang H. Targeted profiling and relative quantification of benzoyl diterpene alkaloids in Aconitum
roots by using LC-MS/MS with precursor ion scan. J Sep Sci 2018; 41:3515-3526. [DOI: 10.1002/jssc.201800149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Wen Gao
- State Key Laboratory of Natural Medicines; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Lei Liu
- State Key Laboratory of Natural Medicines; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| |
Collapse
|
6
|
Song HP, Wang H, Zhao X, He L, Zhong H, Wu SQ, Li P, Yang H. Label-free pharmacological profiling based on dynamic mass redistribution for characterization and authentication of hazardous natural products. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:265-274. [PMID: 28364689 DOI: 10.1016/j.jhazmat.2017.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
Natural products are becoming increasingly popular in multiple fields involving medicines, foods and beverages. However, due to the frequent occurrence of poisoning incidents, their toxicity and safety have caused a serious concern. Here we report a method of biosensor-based two-phase pharmacological profiling (BTPP) for discovery, monitor and control of receptor-targeted natural products. BTPP uses a resonant waveguide grating biosensor for label-free and non-invasive detection of intracellular dynamic mass redistribution (DMR), a phenomenon caused by protein relocalization after receptors receiving stimulation from toxicants. The method can not only facilitate the identification of hazardous materials but also quantify their bioactivity by EC50. As a proof of concept, the method was successfully applied to recognize Daturae Flos (DF), an herb that can antagonize muscarinic acetylcholine M2 receptor and further cause poisoning, from other easily confused species. BTPP combined with high performance liquid chromatography revealed that scopolamine and hyoscyamine in DF were the key marker compounds. Moreover, the method accurately picked out 2 M2 receptor antagonists from 25 natural compounds, displaying its potential in high-throughput screening. This study provides a systematic illustration about the establishment, applicability and advantages of BTPP, which contributes to the safety assessment of natural products in related fields.
Collapse
Affiliation(s)
- Hui-Peng Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoai Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Ling He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Huailing Zhong
- U-Pharm Laboratories LLC, 239 New Rd, Suite A-107, Parsippany, NJ 07054 USA
| | - Si-Qi Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Anzanello M, Kahmann A, Marcelo M, Mariotti K, Ferrão M, Ortiz R. Multicriteria wavenumber selection in cocaine classification. J Pharm Biomed Anal 2015; 115:562-9. [DOI: 10.1016/j.jpba.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|