1
|
Song C, Qi Y, Wang C, Jin G, Wang S, Yu D, Guo Z, Liang X. Ordered mesoporous silica microspheres for supercritical fluid chromatography. Chem Commun (Camb) 2024. [PMID: 38372355 DOI: 10.1039/d3cc05690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Herein, silica microspheres with ordered mesopores are synthesized and applied as a stationary phase for supercritical fluid chromatography (SFC). The excellent particle monodispersity and pore orderliness coupled with the rapid analytes diffusion of the supercritical fluid lead to an ultra-high column efficiency of 340 000 plate per m.
Collapse
Affiliation(s)
- Chunying Song
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qi
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Chenyu Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shengfu Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
Li Y, Dong P, Shang Z, Dai L, Wang S, Zhang J. Unveiling the Chemical Composition of Sulfur-Fumigated Herbs: A Triple Synthesis Approach Using UHPLC-LTQ-Orbitrap MS-A Case Study on Steroidal Saponins in Ophiopogonis Radix. Molecules 2024; 29:702. [PMID: 38338446 PMCID: PMC10856428 DOI: 10.3390/molecules29030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Ophiopogonis Radix (OR) is a traditional Chinese medicine. In recent years, in order to achieve the purpose of drying, bleaching, sterilizing and being antiseptic, improving appearance, and easy storage, people often use sulfur fumigation for its processing. However, changes in the chemical composition of medicinal herbs caused by sulfur fumigation can lead to the transformation and loss of potent substances. Therefore, the development of methods to rapidly reveal the chemical transformation of medicinal herbs induced by sulfur fumigation can guarantee the safe clinical use of medicines. In this study, a combined full scan-parent ions list-dynamic exclusion acquisition-diagnostic product ions analysis strategy based on UHPLC-LTQ-Orbitrap MS was proposed for the analysis of steroidal saponins and their transformed components in sulfur-fumigated Ophiopogonis Radix (SF-OR). Based on precise mass measurements, chromatographic behavior, neutral loss ions, and diagnostic product ions, 286 constituents were screened and identified from SF-OR, including 191 steroidal saponins and 95 sulfur-containing derivatives (sulfates or sulfites). The results indicated that the established strategy was a valuable and effective analytical tool for comprehensively characterizing the material basis of SF-OR, and also provided a basis for potential chemical changes in other sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Yanan Li
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pingping Dong
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Macao SAR 999078, China
| | - Zhanpeng Shang
- School of Pharmacy, Beijing University of Chinese Medicine, Beijing 100191, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaoping Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
3
|
Advanced Development of Supercritical Fluid Chromatography in Herbal Medicine Analysis. Molecules 2022; 27:molecules27134159. [PMID: 35807405 PMCID: PMC9268462 DOI: 10.3390/molecules27134159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
The greatest challenge in the analysis of herbal components lies in their variety and complexity. Therefore, efficient analytical tools for the separation and qualitative and quantitative analysis of multi-components are essential. In recent years, various emerging analytical techniques have offered significant support for complicated component analysis, with breakthroughs in selectivity, sensitivity, and rapid analysis. Among these techniques, supercritical fluid chromatography (SFC) has attracted much attention because of its high column efficiency and environmental protection. SFC can be used to analyze a wide range of compounds, including non-polar and polar compounds, making it a prominent analytical platform. The applicability of SFC for the separation and determination of natural products in herbal medicines is overviewed in this article. The range of applications was expanded through the selection and optimization of stationary phases and mobile phases. We also focus on the two-dimensional SFC analysis. This paper provides new insight into SFC method development for herbal medicine analysis.
Collapse
|
4
|
Ganzera M, Zwerger M. Analysis of natural products by SFC – Applications from 2015 to 2021. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Losacco GL, Veuthey JL, Guillarme D. Metamorphosis of supercritical fluid chromatography: A viable tool for the analysis of polar compounds? Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
|
7
|
Gibitz-Eisath N, Eichberger M, Gruber R, Seger C, Sturm S, Stuppner H. Towards eco-friendly secondary plant metabolite quantitation: Ultra high performance supercritical fluid chromatography applied to common vervain (Verbena officinalis L.). J Sep Sci 2019; 43:829-838. [PMID: 31769179 PMCID: PMC7160600 DOI: 10.1002/jssc.201900854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin‐7‐O‐glucuronide, luteolin‐7‐O‐glucuronide, apigenin‐7‐O‐diglucuronide, verbascoside, and luteolin‐7‐O‐diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head‐to‐head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing‐Bablok‐correlation and Bland‐Altman‐plot analysis. This cross‐validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross‐validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.
Collapse
Affiliation(s)
- Nora Gibitz-Eisath
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Miriam Eichberger
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Regina Gruber
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Christoph Seger
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Risch Laboratory Group, Buchs, SG, Switzerland
| | - Sonja Sturm
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Development of an Oriental Medicine Discrimination Method through Analysis of Steroidal Saponins in Dioscorea nipponica Makino and Their Anti-Osteosarcoma Effects. Molecules 2019; 24:molecules24224022. [PMID: 31698850 PMCID: PMC6891741 DOI: 10.3390/molecules24224022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
To prevent confusing Dioscorea nipponica (DN), an Oriental medicine, with Dioscorea quinquelobata (DQ) and Dioscorea septemloba (DS), a simple and accurate quantitative analysis method using HPLC combined with ultraviolet (UV) detection was developed and verified with UPLC-QTOF/MS through identification of five saponin glycosides: protodioscin (1), protogracillin (2), pseudoprotodioscin (3), dioscin (4), and gracillin (5). The newly developed analysis method showed sufficient reproducibility (<1.91%) and accuracy (92.1%–102.6%) and was able to identify DN based on the presence of compound 3 (13.821 ± 0.037 mg/mL) and the absence of 5. Compound 1, which is present in DN at a relatively high level (159.983 ± 0.064 mg/mL), was also an important marker for identification. Among the three species, DN showed the strongest activation of apoptotic signaling in osteosarcoma cells, while the four compounds detected in DN showed IC50 values of 6.43 (1), 10.61 (2), 10.48 (3), and 6.90 (4). In conclusion, the strong inhibitory effect of DN against osteosarcoma was confirmed to be associated with 1 and 4, which is also related to the quantitative results. Therefore, the results of this study might provide important information for quality control related to Oriental medicine.
Collapse
|
9
|
Modeling the competitive adsorption of sample solvent and solute in supercritical fluid chromatography. J Chromatogr A 2019; 1603:348-354. [DOI: 10.1016/j.chroma.2019.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
|
10
|
Sun X, Yang J, Zhao Y, Zheng W, Pang X, Wang B, Wang J, Li Q, Chen X, Zhang J, Ding Q, Sun Y, Liu D, Zhang D, Liu S, Guo B, Ma B. Comprehensive analysis and quality assessment of Herba Epimedii from multiple botanical origins based on ultra-high performance supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry and photodiode array detector. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. J Chromatogr A 2019; 1593:127-134. [DOI: 10.1016/j.chroma.2019.01.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
|
12
|
Shulaev V, Isaac G. Supercritical fluid chromatography coupled to mass spectrometry – A metabolomics perspective. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:499-505. [DOI: 10.1016/j.jchromb.2018.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
13
|
Current trends in supercritical fluid chromatography. Anal Bioanal Chem 2018; 410:6441-6457. [DOI: 10.1007/s00216-018-1267-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
|
14
|
Separation of Piper kadsura Using Preparative Supercritical Fluid Chromatography Combined with Preparative Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3544-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Murauer A, Ganzera M. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography. J Chromatogr A 2018; 1554:117-122. [PMID: 29699870 PMCID: PMC6193530 DOI: 10.1016/j.chroma.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For the first time Supercritical Fluid Chromatography has been utilized for their separation. Six respective derivatives (dihydroquinidine, dihydroquinine, quinidine, quinine, cinchonine and cinchonidine) could be resolved in less than 7 min, and three of them quantified in crude plant extracts. The optimum stationary phase showed to be an Acquity UPC2 Torus DEA 1.7 μm column, the mobile phase comprised of CO2, acetonitrile, methanol and diethylamine. Method validation confirmed that the procedure is selective, accurate (recovery rates from 97.2% to 103.7%), precise (intra-day ≤2.2%, inter-day ≤3.0%) and linear (R2 ≥ 0.999); at 275 nm the observed detection limits were always below 2.5 μg/ml. In all of the samples analyzed cinchonine dominated (1.87%-2.30%), followed by quinine and cinchonidine. Their total content ranged from 4.75% to 5.20%. These values are in good agreement with published data, so that due to unmatched speed and environmental friendly character SFC is definitely an excellent alternative for the analysis of these important natural products.
Collapse
Affiliation(s)
- Adele Murauer
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|