1
|
Riboni N, Ribezzi E, Marraffa E, Mora P, Bellucci C, Bianchi F, Careri M. An ex vivo headspace gas chromatography-mass spectrometry method for the determination of short-chain siloxanes in silicon oil tamponades used in ophthalmic surgery. J Pharm Biomed Anal 2024; 238:115871. [PMID: 38006704 DOI: 10.1016/j.jpba.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Being able to facilitate retinal reattachment by preventing water migration into the subretinal space, silicone oils are widely used as long-term intraocular tamponade to treat cases of retinal detachment. Various commercial tamponades constituted by linear polydimethylsiloxane polymers with different molecular weights and cyclic impurities are available. In this study, for the first time, an untargeted headspace-gas-chromatography-mass spectrometry (HS-GC-MS) method was developed to identify low-molecular weight contaminants in three different types of silicone oil tamponades, namely Siluron 2000, RS-OIL ECS5000 and Densiron Xtra. Both commercial and post-operative tamponades were analysed to screen for the different classes of compounds present in the samples. The most abundant classes were short-chain siloxanes, fluorinated compounds, and hydrocarbons. To quantify the siloxanes present in the samples, a targeted HS-GS-MS was optimized using a central composite design and validated according to guidelines for bioanalytical methods. Lower limits of quantification in the low μg/L range, good precision with RSD% < 12% and accuracy with recovery rates in the 81 ( ± 7) - 96 ( ± 4) % range were achieved. Short-chain siloxanes were quantified in both commercial and post-operative tamponades, being the RS-OIL ECS5000 characterized by the highest concentration levels of the investigated analytes. By contrast, Densiron Xtra tamponades showed the lowest amount of short-chain siloxanes, observing a general decrease in their concentration levels according to the residence time in the eyes.
Collapse
Affiliation(s)
- Nicolò Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy.
| | - Erika Ribezzi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| | - Enrico Marraffa
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| | - Paolo Mora
- Ophthalmology Unit, University Hospital of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Carlo Bellucci
- Ophthalmology Unit, University Hospital of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy.
| | - Maria Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| |
Collapse
|
2
|
Tarek Mahmoud S, Moffid MA, Sayed RM, Mostafa EA. Core shell stationary phase for a novel separation of some COVID-19 used drugs by UPLC-MS/MS Method: Study of grapefruit consumption impact on their pharmacokinetics in rats. Microchem J 2022; 181:107769. [PMID: 35855210 PMCID: PMC9284531 DOI: 10.1016/j.microc.2022.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
A sensitive and selective UPLC-MS/MS method was developed for the synchronized determination of four drugs used in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely, azithromycin, apixaban, dexamethasone, and favipiravir in rat plasma. using a Poroshell 120 EC-C18 column (50 mm × 4.6 mm, 2.7 m) with a high-resolution ESI tandem mass spectrometer detection with multiple reaction monitoring. We used an Agilent Poroshell column, which is characterized by a stationary phase based on non-porous core particles. With a remarkable improvement in the number of theoretical plates and low column backpressure. In addition, the developed method was employed in studying the potential food-drug interaction of grapefruit juice (GFJ) with the selected drugs which affects their pharmacokinetics in rats. The LC-MS/MS operated in positive and negative ionization mode using two internal standards: moxifloxacin and chlorthalidone, respectively. Liquid- liquid extraction of the cited drugs from rat plasma was accomplished using diethyl ether: dichloromethane (70:30, v/v). The analytes were separated using methanol: 0.1 % formic acid in water (95: 5, v/v) as a mobile phase in isocratic mode of elution pumped at a flow rate of 0.3 mL/min. A detailed validation of the bio-analytical method was performed in accordance with US-FDA and EMA guidelines. Concerning the in vivo pharmacokinetic study, the statistical significance between the results of the test groups receiving GFJ along with the cited drugs and the control group was assessed demonstrating that GFJ increased the plasma concentration of azithromycin, apixaban, and dexamethasone. Accordingly, this food-drug interaction requires cautious ingestion of GFJ in patients using (SARS-CoV-2) medications as it can produce negative effects in the safety of the drug therapy. A potential drug-drug interaction is also suggested between those medications requiring a suitable dose adjustment.
Collapse
Affiliation(s)
- Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Marwa A Moffid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Rawda M Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Eman A Mostafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
3
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
4
|
Simultaneous quantification of dexamethasone and 6β-hydroxydexamethasone in rabbit plasma, aqueous and vitreous humor, and retina by UHPLC-MS/MS. Bioanalysis 2021; 13:1051-1062. [PMID: 34100308 DOI: 10.4155/bio-2021-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To develop and validate a fit for purpose method for the simultaneous determination of dexamethasone and its major metabolite, 6β-hydroxydexamethasone, in rabbit plasma and ocular matrices to measure the in vivo release and distribution profile of dexamethasone from intravitreal implants. Materials & methods: An UHPLC-MS/MS system was employed to perform the bioanalysis. The method was validated according to the US FDA Bioanalytical Method Validation Guidance for Industry. Results & conclusion: The method was found to be fit-for-purpose for the described biological matrices and had a LLOQ of 0.1 ng/ml.
Collapse
|
5
|
WEI J, QIN M, YANG J, YANG L. [Research progress of microextraction by packed sorbent and its application in microvolume sample extraction]. Se Pu 2021; 39:219-228. [PMID: 34227304 PMCID: PMC9403807 DOI: 10.3724/sp.j.1123.2020.04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Microextraction is a rapidly developing sample preparation technology in the field of analytical chemistry, which is seeing widespread application. Accurate sample preparation can not only save time but also improve the efficiency of analysis, determination, and data quality. At present, sample pretreatment methods must be rapid, allow for miniaturization, automation, and convenient online connection with analytical instruments. To meet the requirements of green analytical methods and improve the extraction efficiency, microextraction techniques have been introduced as suitable replacements to conventional sample preparation and extraction methods. Microextraction using a packed sorbent (MEPS) is a new type of sample preparation technology. The MEPS equipment was prepared using microsyringe with a volume of 50-500 μL, including MEPS syringes and MEPS adsorption beds (barrel insert and needle, BIN), which is essentially similar to a miniaturized solid phase extraction device. The BIN contains the adsorbent and is built into the syringe needle. A typical MEPS extraction procedure involves repeatedly pumping the sample solution in two directions (up and down) through the adsorbent multiple times in the MEPS syringe. The specific operation course of MEPS includes conditioning, loading, washing, elution, and introduction into the analysis instrument. The conditioning process is adopted to infiltrate the dry sorbent and remove bubbles between the filler particles. The adsorption process is accomplished by pulling the liquid plunger of the syringe so that the sample flows through the adsorbent in both directions multiple times. The washing process involves rinsing the sorbent to remove unwanted components after the analyte is retained. The elution process involves the use of an eluent to ensure that the sample flows through the adsorbent in both directions multiple times, so that elution can be realized by the pumping-pushing action. The target analyte is eluted with the eluent, which can be directly used for chromatographic analysis. However, when processing complex biological matrix samples by MEPS, pretreatment steps such as dilution of the sample and removal of proteins are commonly required. At present, the operation modes of the MEPS equipment are classified into three types: manual, semi-automated, and fully automated. This increase in the degree of automation is highly conducive to processing extremely low or extremely high sample volumes. Critical factors affecting the MEPS performance have been investigated in this study. The conditions for MEPS optimization are the operating process parameters, including sample flow rate, sample volume, number of sample extraction cycles, type and volume of the adsorbent, and elution solvents. It is also necessary to consider the effect of the sample matrix on the performance of MEPS. The MEPS sorbent should be cleaned by a solvent to eliminate carryover and reuse. The sorbent is a core aspect of MEPS. Several types of commercial and non-commercial sorbents have been used in MEPS. Commercial sorbents include silica-based sorbents such as unmodified silica (SIL), C2, C8, and C18. Unmodified silicon-based silica is a normal phase adsorption material, which is highly polar and can be used to retain polar analytes. C18, C8, and C2 materials are suitable for reversed-phase adsorption, while SCX, SAX, APS, and M1 (C8+SCX) adsorbents are suitable for the mixed-mode and ion-exchange modes. Noncommercial sorbents include molecularly imprinted materials, restricted-access molecularly imprinted materials, graphitized carbon, conductive polymer materials, modified silicon materials, and covalent-organic framework materials. The performance of MEPS has recently been illustrated by online with LC-MS and GC-MS assays for the analysis of biological matrices, environmental samples, and food samples. Pretreatment in MEPS protocols includes dilution, protein precipitation, and centrifugation in biological fluid matrices. Because of the small sample size, fast operation, etc., MEPS is expected to be more widely used in the analysis of bio-matrix samples. MEPS devices could also play an important role in field pretreatment and analysis.
Collapse
Affiliation(s)
- Jianan WEI
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Molin QIN
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Junchao YANG
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| | - Liu YANG
- 国民核生化灾害防护国家重点实验室, 北京 102205
- State key Laboratory of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China
| |
Collapse
|
6
|
Bianchi F, Pankajakshan A, Fornari F, Mandal S, Pelagatti P, Bacchi A, Mazzeo PP, Careri M. A zinc mixed-ligand microporous metal-organic framework as solid-phase microextraction coating for priority polycyclic aromatic hydrocarbons from water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104646] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater 2020; 104:104-114. [PMID: 31931169 DOI: 10.1016/j.actbio.2020.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. To explore drug delivery system of organic-inorganic hybrid nanocomposites for the efficient delivery of dexamethasone disodium phosphate (DEXP), a targeted hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives was designed. A special substrate of peptide transporter-1 (PepT-1) and glutathione was modified on CMCS. CMCS-glutathione-glycylsarcosine (CMCG-GS) and CMCS-glutathione-valyl-valine (CMCG-VV)-LDH hybrid nanocomposites were prepared and structurally confirmed. The in vitro experiments on human conjunctival epithelial cells showed noncytotoxicity (LDH concentration ≤100.0 µg/mL) and enhanced permeability for hybrid nanocomposites. Additionally, cellular uptake of the CMCG-GS-DEXP-LDH (10:1) nanocomposite eye drops involved clathrin-mediated endocytosis and PepT-1 mediated actively targeting transport. Results of the in vivo precorneal retention study showed an 8.35-fold, 2.87-fold and 2.58-fold increase of AUC0-6 h, Cmax and MRT for CMCG-GS-DEXP-LDH (10:1) hybrid nanocomposite eye drops, respectively, compared to that of the commercial product. Fluorescence imaging of fluorescein isothiocyanate isome (FITC)-loaded LDH hybrid nanocomposites demonstrated that FITC could diffuse into the choroid-retina with the shelter of LDH and CMCG-GS. The presence of a strong fluorescence signal of FITC-conjugated LDH hybrid nanocomposites in the sclera revealed that integral LDH nanocarrier reached the sclera. In the tissue distribution evaluation of rabbit's eyes, DEXP of CMCG-GS-DEXP-LDH (10:1) nanocomposites group retained in the target of the choroid-retina for 3 h with final concentration at 120.04 ng/g. Furthermore, the results of fluorescence imaging and tissue distribution suggested that the intraocular transport pathway for the hybrid nanocomposites is the conjunctival-scleral route. Consequently, the developed hybrid nanocomposites offer a simple and efficient strategy for topically administered drug delivery to the posterior segment of the eye. STATEMENT OF SIGNIFICANCE: Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. In this manuscript, hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives were designed. The multifunctional properties of these hybrid nanocomposites were attributed to active targeting, bioadhesive capacity and penetration enhancement. Visualization of transport routes of fluorescein isothiocyanate-conjugated LDH hybrid nanocomposites demonstrated that the integral LDH nanocarrier reached the sclera through the conjunctival-scleral pathway, and the loaded drug could further diffuse to the retina. The multifunctional CMCS derivatives-LDH hybrid nanocomposites could be applied for the efficient drug delivery to the posterior segment of the eye through noninvasive topical instillation.
Collapse
|
8
|
Microextraction approaches for bioanalytical applications: An overview. J Chromatogr A 2019; 1616:460790. [PMID: 31892411 DOI: 10.1016/j.chroma.2019.460790] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
Abstract
Biological samples are usually complex matrices due to the presence of proteins, salts and a variety of organic compounds with chemical properties similar to those of the target analytes. Therefore, sample preparation is often mandatory in order to isolate the analytes from troublesome matrices before instrumental analysis. Because the number of samples in drug development, doping analysis, forensic science, toxicological analysis, and preclinical and clinical assays is steadily increasing, novel high throughput sample preparation approaches are calling for. The key factors in this development are the miniaturization and the automation of the sample preparation approaches so as to cope with most of the twelve principles of green chemistry. In this review, recent trends in sample preparation and novel strategies will be discussed in detail with particular focus on sorptive and liquid-phase microextraction in bioanalysis. The actual applicability of selective sorbents is also considered. Additionally, the role of 3D printing in microextraction for bioanalytical methods will be pinpointed.
Collapse
|
9
|
Bianchi F, Agazzi S, Riboni N, Erdal N, Hakkarainen M, Ilag LL, Anzillotti L, Andreoli R, Marezza F, Moroni F, Cecchi R, Careri M. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 2019; 202:136-144. [DOI: 10.1016/j.talanta.2019.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
|
10
|
Pereira JAM, Gonçalves J, Porto-Figueira P, Figueira JA, Alves V, Perestrelo R, Medina S, Câmara JS. Current trends on microextraction by packed sorbent – fundamentals, application fields, innovative improvements and future applications. Analyst 2019; 144:5048-5074. [DOI: 10.1039/c8an02464b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MEPS, the acronym of microextraction by packed sorbent, is a simple, fast and user- and environmentally-friendly miniaturization of the popular solid-phase extraction technique (SPE).
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - João Gonçalves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | | | - José A. Figueira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Vera Alves
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - Sonia Medina
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- 9020-105 Funchal
- Portugal
- Faculdade de Ciências Exatas e da Engenharia
| |
Collapse
|