1
|
Lu J, Guo S, Liu Q, Tursumamat N, Liu S, Wu S, Li H, Wei J. Recent advances in analytical methods and bioinformatic tools for quantitative glycomics. Anal Bioanal Chem 2025; 417:1947-1959. [PMID: 39948299 DOI: 10.1007/s00216-025-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/02/2025]
Abstract
The significance of glycans in various biological processes has been widely acknowledged. Quantitative glycomics is emerging as an important addition to clinical biomarker discovery, as it helps uncover disease-associated glycosylation patterns that are valuable for diagnosis, prognosis, and treatment evaluation. Compared to glycoproteomics and other established omics approaches, quantitative glycomics exhibits greater methodological diversity and it encounters various challenges in automation and standardization. Nonetheless, numerous advancements have been made in this field over the past 5 years. Here, we have reviewed recent progress in analytical methods and software to improve mass spectrometry-based quantitative glycomics primarily on N- and O-glycosylation. The discussion is organized into four sections: stable isotopic labeling, isobaric labeling, label-free, and fluorescence labeling strategies, with a particular emphasis on quantitative data interpretation. Novel derivatization methods and advanced techniques have been developed for high-throughput and highly sensitive glycan quantification with high accuracy. However, due to variations in glycan derivatization and difficulties in structural identification, most glycomic quantification methods are tailored to specific applications, and manual inspection is frequently necessary for precise data interpretation. Therefore, further advancements in glycan sample preparation, structural characterization, and automated data interpretation are essential to facilitate comprehensive and accurate quantification across a wide array of glycans.
Collapse
Affiliation(s)
- Jihong Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuhong Guo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiannan Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengyang Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuye Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Heming Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Juan Wei
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Wang Z, Zhang J, Li L. Recent Advances in Labeling-Based Quantitative Glycomics: From High-Throughput Quantification to Structural Elucidation. Proteomics 2025; 25:e202400057. [PMID: 39580675 PMCID: PMC11735667 DOI: 10.1002/pmic.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Glycosylation, a crucial posttranslational modification (PTM), plays important roles in numerous biological processes and is linked to various diseases. Despite its significance, the structural complexity and diversity of glycans present significant challenges for mass spectrometry (MS)-based quantitative analysis. This review aims to provide an in-depth overview of recent advancements in labeling strategies for N-glycomics and O-glycomics, with a specific focus on enhancing the sensitivity, specificity, and throughput of MS analyses. We categorize these advancements into three major areas: (1) the development of isotopic/isobaric labeling techniques that significantly improve multiplexing capacity and throughput for glycan quantification; (2) novel methods that aid in the structural elucidation of complex glycans, particularly sialylated and fucosylated glycans; and (3) labeling techniques that enhance detection ionization efficiency, separation, and sensitivity for matrix-assisted laser desorption/ionization (MALDI)-MS and capillary electrophoresis (CE)-based glycan analysis. In addition, we highlight emerging trends in single-cell glycomics and bioinformatics tools that have the potential to revolutionize glycan quantification. These developments not only expand our understanding of glycan structures and functions but also open new avenues for biomarker discovery and therapeutic applications. Through detailed discussions of methodological advancements, this review underscores the critical role of derivatization methods in advancing glycan identification and quantification.
Collapse
Affiliation(s)
- Zicong Wang
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jingwei Zhang
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lingjun Li
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Lachman Institute for Pharmaceutical DevelopmentSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Li Y, Wang S, Han C, Li XL, Min JZ. Unlocking the future of colorectal cancer detection: Advances in screening glycosylation-based biomarkers on biological mass spectrometry technology. J Chromatogr A 2024; 1738:465501. [PMID: 39504704 DOI: 10.1016/j.chroma.2024.465501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
The incidence of colorectal cancer (CRC) is increasingly affecting younger populations, with its mortality rate rising annually. However, current clinical diagnostic techniques, such as colonoscopy and CEA antigen testing, remain invasive and prone to false-positive results, complicating early diagnosis and intervention. Glycosylation, a key post-translational modification, plays an essential role in cellular function, physiological regulation, and disease processes. In recent years, mass spectrometry technology has emerged as a powerful tool for screening glycan biomarkers, owing to its exceptional separation capabilities and sensitivity. This review encompasses the advancements in CRC glycan biomarkers from 2016 to 2024, with particular emphasis placed on N/O-glycan biomarkers identified through mass spectrometry. Nonetheless, the intrinsic low abundance and polyhydroxy nature of glycans hinder the specificity and sensitivity of current glycan biomarkers. To overcome these limitations, this article outlines pretreatment strategies for N/O-glycans, including glycan release, enrichment, purification, and derivatization, in conjunction with relative quantification techniques and high-throughput bioinformatics tools for biomarker screening. These strategies are anticipated to enhance the efficiency and precision of glycan biomarker identification through mass spectrometry. These advancements hold significant promise for enhancing CRC prevention, diagnosis, and treatment, thereby potentially improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, 133002, Jilin Province, China
| | - Songze Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
4
|
Li XL, Li Y, Xiao S, Li Q, Han C, Liu D, Cui T, Rao X, Todoroki K, Yang G, Min JZ. Stable isotope labeling differential glycans discovery in the serum of acute myocardial infarction by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high resolution mass spectrometry. Anal Chim Acta 2023; 1264:341269. [PMID: 37230719 DOI: 10.1016/j.aca.2023.341269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) poses a grave threat to human life. However, most clinical biomarkers have limitations of low sensitivity and specificity. Therefore, screening novel glycan biomarkers with high sensitivity and specificity is crucial for the prevention and treatment of AMI. The novel method of ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) with d0/d5-BOTC probe labeling for relative quantification of glycans based on Pronase E digestion was established to screen novel glycan biomarkers in the serum of 34 AMI patients relative to healthy volunteers. The monosaccharide model D-glucosamine was used to investigate the effectiveness of the derivatization; the limit of detection (S/N = 3) was 10 amol. The accuracy was verified based on the consistency of different theoretical molar ratios (d0/d5 = 1:2, 2:1) and intensity ratios following digestion of glycoprotein ribonuclease B. Expressions of H4N4F3SA, H4N6F2, H4N6SA, H4N6F3 and H5N4FSA in the serum were significantly different (p < 0.0005) between AMI patients and healthy volunteers. The area under the receiver operating characteristic curve (AUC) for H4N6SA, H5N4FSA, and H4N6F2 was greater than 0.9039. Based on the proposed method, H4N6SA, H5N4FSA, and H4N6F2 in human serum showed high accuracy and specificity and may serve as potential glycan biomarkers, crucial for the diagnosis and treatment monitoring of AMI.
Collapse
Affiliation(s)
- Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Yuxuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Shuyun Xiao
- Department of Pharmacy of Tianjin Children's Hospital, Tianjin, 300202, China
| | - Qingsong Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Danyang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Tengfei Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Xiyang Rao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Li XL, Han C, Luo M, Xiao S, Li J, Yu C, Cheng S, Jin Y, Han Y, Todoroki K, Shi Q, Min JZ. Relative quantitation of glycans in cetuximab using ultra-high-performance liquid chromatography-high-resolution mass spectrometry by Pronase E digestion. J Chromatogr A 2022; 1677:463302. [PMID: 35820231 DOI: 10.1016/j.chroma.2022.463302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Glycans play important roles in the activity and function of monoclonal antibodies (mAbs). In this study, an isotope labeling method for the relative quantitative analysis of glycans in cetuximab, a chimeric human/mouse IgG1 monoclonal antibody that specifically targets epidermal growth factor receptor, via hydrophilic interaction LC-ultra-high-performance LC-HRMS was established based on Pronase E digestion. To this aim, novel isotope MS probes, i.e., 3-benzoyl-2-oxothiazolidine-4-carboxylic acid (d0-BOTC) and 3-(2,3,4,5,6-pentadeuterio-benzoyl)-2-oxothiazolidine-4-carboxylate acid (d5-BOTC), which include a carboxyl group to target the amino functional group in glycosylamine, were developed. The nonspecific Pronase E enzyme could simultaneously digest the peptide bound to the N- and O-glycans into glycosylamine having only one amino acid. Since the mass difference between the light- and heavy-labeled glycans was 5.0 Da, the relative abundance of their MS peaks was used to achieve the qualitative and relative quantitative analysis of glycans. Sialylglycopeptide was used as a complex glycan model to validate the accuracy of the method. The results demonstrated the good linearity (R2 ≥ 0.9994) between the experimentally detected MS intensity ratios and the theoretical molar ratios of the d0-BOTC to the corresponding d5-BOTC derivatives in the dynamic range of 0.03-10 and 0.03-20 of three orders magnitude for the d5-BOTC/d0-BOTC ratios. The reproducibility was between 0.16% and 10.70%, and the limit of detection was 13 fmol. The feasibility of the relative quantification method was investigated by analyzing the glycan content in cetuximab, finding good consistency between experimental and theoretical molar ratios (5:1, 3:1, 1:1, 1:3, 1:5) of d0/d5-BOTC-labeled glycans. Finally, 13 glycans were successfully identified in cetuximab by applying this method using an in-house Tracefinder database. This study provides a novel strategy for the high throughput analysis, identification, and functional study of glycans in mAbs.
Collapse
Affiliation(s)
- Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Miao Luo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Shuyun Xiao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Jing Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Chenglong Yu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Qing Shi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China.
| |
Collapse
|
7
|
A Label-free Fluorescent Aptasensor Based on Exonuclease I for the Determination of Ochratoxin A. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Kim J, Yin D, Lee J, An HJ, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ): Application to Glycomics. Anal Chem 2021; 93:14497-14505. [PMID: 34724788 DOI: 10.1021/acs.analchem.1c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dongtan Yin
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jua Lee
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
9
|
Yun J, Jo JY, Tuomivaara ST, Lim JM. Isotope labeling strategies of glycans for mass spectrometry-based quantitative glycomics. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
11
|
Ma Q, Man X, Xu CY, Huo J, Qi C, Shi Q, Nan J, Min JZ. Simultaneous determination of three endogenous chiral thiol compounds in serum from humans at normal and stress states using ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high resolution mass spectrometry. J Chromatogr A 2021; 1642:462028. [PMID: 33721814 DOI: 10.1016/j.chroma.2021.462028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Measurement of chiral thiol compounds such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) in human serum plays an important role in the early diagnosis and warning of cardiovascular disease, neurodegenerative disease, and cancer. We developed a novel chiral mass spectrometry derivatization reagent, (R)-(5-(3-isothiocyanatopyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium (NCS-OTPP), with triphenylphosphine (TPP) as a basic structure carrying a permanent positive charge for the diastereomeric separation of chiral thiol compounds by ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). A novel method was developed for simultaneous determination of three kinds of chiral thiol compounds based on the NCS-OTPP derivatization method. Three kinds of chiral thiol compounds on a YMC Triart C18 (2.0 × 150 mm, 1.9 μm) column with Rs were 1.56-1.68. The protonated precursor to product ion transitions monitored for GSH was m/z 780.16→747.24/473.18, Cys was m/z 594.20→561.18/473.18, and Hcy was m/z 608.21→575.19/473.18. An excellent linearity for all the analytes with correlation coefficients ≥ 0.9995 and suitable precision with inter-day and intra-day coefficients of variation RSDs was 0.83-4.06% and 0.95-3.11%. Satisfactory accuracy with recoveries between 83.73 and 103.35% was observed. The limit of detection (S/N = 3) was 2.4-7.2 fmol. Furthermore, the method was successfully applied to the simultaneous determination of three kinds of free and total thiol compounds in serum from 10 healthy volunteers at normal and stress states.
Collapse
Affiliation(s)
- Qingkun Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Xiaoxi Man
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Chun-Yan Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Jian Huo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Qing Shi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Jun Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Orthopaedics, Yanbian University Hospital, Yanji 133002, Jilin Province, China.
| |
Collapse
|
12
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
13
|
Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1616:460794. [DOI: 10.1016/j.chroma.2019.460794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
|
14
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
15
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Xu Y, Sun L, Wang X, Zhu S, You J, Zhao XE, Bai Y, Liu H. Integration of stable isotope labeling derivatization and magnetic dispersive solid phase extraction for measurement of neurosteroids by in vivo microdialysis and UHPLC-MS/MS. Talanta 2019; 199:97-106. [DOI: 10.1016/j.talanta.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
|