1
|
Zhang M, Cheng J, Luo J, Li C, Hou T, Zhao Y, Wang Y, Qu H, Kong H. Protective effects of Scutellariae Radix Carbonisata-derived carbon dots on blood-heat and hemorrhage rats. Front Pharmacol 2023; 14:1118550. [PMID: 37637430 PMCID: PMC10450154 DOI: 10.3389/fphar.2023.1118550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
As the charcoal processing product of Scutellariae Radix (SR), SR Carbonisata (SRC) has been clinically used as a cooling blood and hemostatic agent for thousands of years. However, the underlying active ingredients and mechanism of SRC still remained unspecified. In this study, SRC derived carbon dots (SRC-CDs) were extracted and purified from the aqueous solution of SRC, followed by physicochemical property assessment by series of technologies. The cooling blood and hemostatic effects of SRC-CDs were further evaluated via a blood-heat and hemorrhage (BHH) rat model. Results showed that the diameters of obtained fluorescent SRC-CDs ranged from 5.0 nm to 10.0 nm and possessed functional group-rich surfaces. Additionally, the as-prepared SRC-CDs showed remarkable cooling blood and hemostasis effects in BHH model, mainly manifested by significant improvement of elevated rectal temperature, inflammatory cytokines (TNF-α, IL-6, and IL-1β) levels, as well as protein expressions of myD88 and NF-κB p65, abnormal coagulation parameters (elevated APTT and FIB), hemogram parameters (RBC, HGB, and HCT), and histopathological changes in lung and gastric tissues. This study, for the first time, demonstrated that SRC-CDs were the cooling blood and hemostatic active components of SRC, which could inhibit the release of inflammatory cytokines by regulating myD88/NF-κB signaling pathway, and activating the fibrin system and endogenous coagulation pathway. These results not only provide a new perspective for the study of active ingredients of carbonized herbs represented by SRC, but also lay an experimental foundation for the development of next-generation nanomedicines.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Liu T, Zhou N, Liu Z, Shan Z, Wang Y, Zheng X, Feng W. Integrated Metabonomic Study on the Relationship between Medicinal Properties and Efficacy of Rehmanniae Radix. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:169-187. [PMID: 36503428 DOI: 10.1142/s0192415x23500106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each Chinese medicine has its own properties and effects. However, the close connection between the medicinal properties and the effects of the medicine remains unclear. To export the scientific connection between the medicinal properties and efficacy of Rehmanniae Radix (RR), this study established a model and evaluated the therapeutic effects of RR on cold-heat syndrome to access the properties of RR, and then established a blood-heat syndrome model through the injection of rats with dry yeast combined with anhydrous ethanol. Related biochemical indicators (coagulation factors and central pyrogenic factor) were measured to assess the efficacy of RR. Finally, metabonomic technology was used to study the blood-cooling mechanism of RR from two aspects: medicinal properties and efficacy. The comprehensive results suggest that RR can significantly reduce the rectal temperature of blood-heat syndrome model rats and increase both the expression levels of coagulation factors (TNF-[Formula: see text], IL-1[Formula: see text], and IL-6) and the central pyrogenic factors (c-AMP, PGE-2). RR also cools the blood through regulating arginine, proline, phenylalanine, taurine, hypotaurine, sulfur, glycerophospholipid, primary bile acid metabolic pathways, and the tricarboxylic acid cycle. Therefore, RR plays the role of cooling blood by virtue of its cold property. The medicinal property of RR has a guiding effect on the clinical application. Moreover, the integrated metabolomic approach is a powerful tool for studying the properties and efficacy of Chinese medicine.
Collapse
Affiliation(s)
- Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zhen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zengfu Shan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.,The Engineering and Technology Center for Chinese Medicine, Development of Henan Province, Zhengzhou 450046, P. R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China Henan, P. R. China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.,The Engineering and Technology Center for Chinese Medicine, Development of Henan Province, Zhengzhou 450046, P. R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China Henan, P. R. China
| |
Collapse
|
4
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Ye Q, Zhang Y, Yan D, Sun Y, Li M, Cao H, Wang S, Meng J. Integrating pharmacokinetics and network analysis to investigate the mechanism of Moutan Cortex in blood-heat and blood stasis syndrome. Chin Med 2022; 17:107. [PMID: 36104759 PMCID: PMC9476706 DOI: 10.1186/s13020-022-00657-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Raw Moutan Cortex (RMC) has been used in China and other Asian countries for thousands of years. Its medical application is the treatment of cooling blood and promoting blood circulation. However, its therapeutic mechanism is still undefined. METHODS In this study, the pharmacokinetics strategy that integrated network analysis was employed to explore the mechanism of RMC in blood-heat and blood stasis syndrome (BHS) model rats. Firstly, Ultra-High performance Liquid Chromatography coupled with Diode Array Detector (UHPLC-DAD) method was developed to determine nine absorbed compounds in rat serum in BHS and normal rats after oral administration of RMC extract respectively. Then the pharmacology network was established based on the relationship between nine compounds absorbed into the blood and BHS targets. Finally, the predicted hub targets were validated experimentally in human umbilical vein endothelial cells (HUVECs). RESULTS Pharmacokinetic study showed that the pharmacokinetic parameters of nine absorbed compounds had significant differences between BHS and normal groups (p < 0.05). Network analysis showed that 8 target genes, namely, F2, F10, F7, PLAU, MAPK14, MAPK10, AKT1, and NOS3 may be the primary targets regulated by RMC for the treatment of BHS. Among them, targets (F2, F10, F7 and MAPK14, MAPK10, AKT) and 4 active ingredients (paeonol, paeoniflorin, quercetin and oxypaeoniflorin) were selected for evaluating the reliability in vitro experiments, which revealed that the mechanism of RMC against BHS syndrome may inhibit inflammatory pathways and regulate coagulation cascades pathway for cooling and promoting blood circulation. CONCLUSION The proposed pharmacokinetics study integrated network analysis strategy provides a combination method to explore the therapeutic mechanism of RMC on BHS.
Collapse
Affiliation(s)
- Qiuli Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Donghui Yan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Ming Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Yang R, Zhang Y, Wang L, Cheng P, Sun Y, Cao H, Shumei W, Wu L, Meng J. UPLC-Q-Exactive/MS-Based Metabonomics revealed protective effect of Zingiberis Rhizome and Its Processed Product on Deficiency-cold and Hemorrhagic Syndrome rats. Biomed Chromatogr 2022; 36:e5412. [PMID: 35587798 DOI: 10.1002/bmc.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Zingiberis Rhizome carbonisata (ZRC) is the processed product of Zingiberis Rhizome (ZR). ZR is mainly used for warming spleen and stomach for dispelling cold, while ZRC is commonly applied as a treatment for Deficiency-cold and Hemorrhagic Syndrome (DCHS). Although they have long been used to serve different clinical purposes, the specific action mechanism of the drugs and molecular changes underlying ZR processing are not totally clear. In this study, metabolomics study was carried out to analyze the alterations of endogenous metabolites in serum and urine samples of DCHS rat models using ultra-high-performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry (UPLC Q-Exactive MS) technique, followed by the construction of PCA score plots which showed that the ZRC group was completely separated from the DCHS and ZR groups but demonstrated a highly close plotting to the NC group. The results revealed that ZR and ZRC both intervened in the metabolic pathways of DCHS models, but in a varying degree and with different influencing factors. In addition, ZRC was found to function as a treatment for the metabolic disorders of DCHS through 15 pharmacodynamic biomarkers involving a series of pathways, such as glycine, serine and threonine metabolic pathway, as well as arachidonic acid metabolic pathway. This study showed that metabolomics method based on UPLC Q-Exactive MS could preliminarily illuminate the therapeutic mechanism of ZR and ZRC on DCHS, and the changes in ZR processing from the perspective of molecular level. The results also provided a new insight for further research on DCHS treatment.
Collapse
Affiliation(s)
- Rui Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Lvhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| | - Pei Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Wang Shumei
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| | - Liang Wu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, P. R. China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM); Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Wang C, Liang J, Yang W, Wang S, Yu J, Jia P, Du Y, Wang M, Li Y, Zheng X. Ultra-Performance Liquid Chromatography-Q-Exactive Orbitrap-Mass Spectrometry Analysis for Metabolic Communication between Heart and Kidney in Adriamycin-Induced Nephropathy Rats. Kidney Blood Press Res 2021; 47:31-42. [PMID: 34662875 DOI: 10.1159/000519015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Although the adriamycin-induced nephropathy model is frequently employed in the study of nephrotic syndrome and focal segmental glomerulosclerosis, the accompanying myocardial damage has always been a cause for concern. Therefore, there is a great need to study cardiorenal communication in this model. METHODS An adriamycin-induced nephropathy model was established via tail vein injection. The levels of the biochemical indicators serum albumin, serum globulin, serum total protein, serum cholesterol, serum creatinine (SCr), urinary protein, and urinary creatinine (UCr) were measured, and histopathological changes in the heart and kidneys were assessed using hematoxylin-eosin staining. Metabolomic changes in the heart, blood, and kidneys were analyzed using the metabolomics method based on ultra-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry. RESULTS Compared with the control group, the model group showed significant decreases in serum protein and total protein levels, albumin/globulin ratio, and creatinine clearance rate as well as significant increases in serum cholesterol, SCr, urinary protein, and UCr levels. Significant pathological changes were observed in the renal pathology sections in the model group, including diffusely merged glomerular epithelial cells, inflammatory infiltration, and vacuolated glomerular cells. Additionally, thickened myocardial fibers, swollen nuclei, inflammatory infiltration, and partial myocardial necrosis could be seen in the cardiac pathology sections in the model group. Based on multivariate statistical analysis, a total of 20 differential metabolites associated with 15 metabolic pathways were identified in the heart, 7 differential metabolites with 7 metabolic pathways were identified in the blood, and 16 differential metabolites with 21 metabolic pathways were identified in the kidney. Moreover, 6 common metabolic pathways shared by the heart and kidney were identified: arginine and proline metabolism; arginine biosynthesis; glutathione metabolism; alanine, aspartate, and glutamate metabolism; beta-alanine metabolism; and histidine metabolism. Among these metabolic pathways, alanine, aspartate, and glutamate metabolism was shared by the heart, blood, and kidney. Succinic acid was found to be the key regulatory metabolite in cardiorenal metabolic communication. CONCLUSION Six metabolic pathways were found to be involved in cardiorenal metabolic communication in an adriamycin-induced nephropathy model, in which alanine, aspartate, and glutamate metabolism may be the metabolic link between the heart and kidney in the development and maintenance of oxidative stress and inflammation. Succinic acid may serve as a key regulatory metabolic switch or marker of cardiac and renal co-injury, as shown in an adriamycin-induced nephropathy model.
Collapse
Affiliation(s)
- Chunliu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China.,Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Jiping Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Jie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Yapeng Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Mei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Ye Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Li M, Hua S, Huang X, Yue H, Chen C, Liu S. Non-targeted metabonomics to investigate the differences in the properties of ginseng and American ginseng based on rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Sep Sci 2021; 44:3497-3505. [PMID: 34269520 DOI: 10.1002/jssc.202100376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
The basic properties of herbal medicines are cold, hot, warm, and cool. The differentiation of these properties is important for the diagnosis and treatment of diseases. Ginseng and American ginseng possess opposite properties of warm and cool, respectively. At present, the mechanisms and the influence of steaming leading to the differences in their properties are not clear and require further investigation. Therefore, nontargeted metabonomics based on liquid chromatography-mass spectrometry was applied to investigate the effects of ginseng, American ginseng, and their variants on the changes in endogenous metabolites in rat urine. A total of 19 potential biomarkers were screened out and identified, of which 17, 7, and 5, were respectively related to warm, cool, and both warm and cool properties with opposite effects. The metabolic pathways corresponded to fatty acids, lipids, glycolysis, and energy metabolisms. The warm and tonic effects of red ginseng are stronger than those of ginseng and consistent with the theory of traditional Chinese medicine. The red American ginseng has cool property; however, the degree of coolness is less than that of American ginseng. This study provides a reference methodology to understand the effects of processing and mechanisms associated with the differences in the properties of herbal medicines.
Collapse
Affiliation(s)
- Mengmeng Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Shengyan Hua
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China.,Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun, 130022, P.R. China
| |
Collapse
|
10
|
Ye Q, Cheng P, Yan D, Sun Y, Zhang Y, Cao H, Wang S, Meng J. Nine absorbed components pharmacokinetic of raw and processed Moutan Cortex in normal and blood-heat and hemorrhage syndrome model rats. Biomed Chromatogr 2020; 34:e4963. [PMID: 32789887 DOI: 10.1002/bmc.4963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 11/10/2022]
Abstract
Raw Moutan Cortex (RMC) and Processed Moutan Cortex (PMC) have a long history of use in China and other Asian countries. In this study, a rapid and accurate ultra-high-pressure liquid chromatography coupled with diode array detector (UHPLC-DAD) method was developed and validated for the simultaneous determination of nine absorbed compounds of RMC/PMC. After extraction by protein precipitation with methanol from plasma, the analytes were separated on an Acquity UPLC® BEH Shield RP18 column (2.1 × 100 mm, 1.7 μm, Waters, USA). Acetonitrile (A) and 0.1% (v/v) formic acid in water (B) were selected as the mobile phase to perform gradient elution. The linearity of nine analytes was >0.9915. The intra- and inter-assay precision (RSD) values were within 11.18%, and accuracy ranged from 91.32 to 101.29%. Suitable stability, matrix effect and extraction recoveries were also obtained. The validated method was applied to compare the pharmacokinetics of RMC and PMC in Blood-Heat and Hemorrhage Syndrome Model and normal rats. The results revealed that processing and the pathological state could influence the pharmacokinetic characteristics of compounds in RMC/PMC. The study willbe useful for further studies on pharmacokinetics and clinical application of raw and processed Moutan Cortex.
Collapse
Affiliation(s)
- Qiuli Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Pei Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Donghui Yan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Pan S, Zhou J, Zhou S, Huang Z, Meng J. Pharmacokinetic-pharmacodynamic modeling for Moutan Cortex/Moutan Cortex charcoal and the contributions of the chemical component using support vector regression with particle swarm optimization. RSC Adv 2020; 10:24454-24462. [PMID: 35516193 PMCID: PMC9055091 DOI: 10.1039/d0ra04111d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Moutan Cortex (MC) and Moutan Cortex charcoal (MCC) are two kinds of Chinese medicinal materials widely used in traditional Chinese medicine (TCM) with opposite drug efficacy. And the contributions of the chemical component to the drug efficacy are still not clear. In our study, a support vector regression (SVR) model with particle swarm optimization (PSO) has been developed for simultaneously characterizing the pharmacokinetics (PK) and pharmacodynamics (PD) of MC/MCC. Then the contributions of the chemical component to the drug efficacy of MC/MCC are calculated by the weight analysis of SVR. The experimental results show that the effective substances found by the PSO-SVR model in MC and MCC are consistent with TCM theory. And the PSO-SVR model is a better model for PK-PD compared with the back-propagation neural network (BPNN). In conclusion, the PSO-SVR is a valuable tool that linked PK and PD profiles of MC/MCC with multiple components and identified the contributions of multiple therapeutic materials to the drug efficacy.
Collapse
Affiliation(s)
- Sixing Pan
- College of Public Health, Guangdong Pharmaceutical University Guangzhou 510310 China +86 020 39352095
| | - Jianan Zhou
- College of Public Health, Guangdong Pharmaceutical University Guangzhou 510310 China +86 020 39352095
| | - Sujuan Zhou
- College of Medical Information Engineering, Guangdong Pharmaceutical University Guangzhou 510006 China +86 020 39352095
| | - Zhangpeng Huang
- College of Medical Information Engineering, Guangdong Pharmaceutical University Guangzhou 510006 China +86 020 39352095
- Medicinal Information & Real World Engineering Technology Center, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Jiang Meng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China +86 020 39352169
| |
Collapse
|