1
|
Yang Y, Yang G, Zhang W, Xin L, Zhu J, Wang H, Feng B, Liu R, Zhang S, Cui Y, Chen Q, Guo D. Application of lipidomics in the study of traditional Chinese medicine. J Pharm Anal 2025; 15:101083. [PMID: 39995576 PMCID: PMC11849089 DOI: 10.1016/j.jpha.2024.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 02/26/2025] Open
Abstract
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Jing Zhu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Hangtian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Shuya Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Yuanwu Cui
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Dean Guo
- Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
2
|
Wan C, Sun S, Han Y, Du Y, Li X, Zhang L, Yang Y, Hao J, Wu Y. Integrating lipid metabolomics, serum medicinal chemistry, network pharmacology and experimental validation to explore the mechanism of Sanmiao wan in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119295. [PMID: 39733801 DOI: 10.1016/j.jep.2024.119295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common autoimmune disease with a high clinical morbidity and leads to persistent chronic inflammation. Sanmiao wan is a classic formula for the treatment of RA, and the results of clinical and experimental studies have shown its therapeutic effect on RA. However, its mechanism of action remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the effect of Sanmiao wan on RA rats and to further explore its protective mechanism. MATERIALS AND METHODS Research was conducted using RA models induced by Freund's adjuvant complete, and the degree of arthritis, bone destruction, histopathological and clinical chemical indexes of RA model rats were used to evaluate the animal model and the therapeutic effect of Sanmiao wan. A combination of lipid metabolomics, serum medicinal chemistry, network pharmacology, molecular docking and experimental validation was used to systematically elucidate the potential mechanism of action of Sanmiao wan in the treatment of RA. RESULT Pharmacodynamic results showed that Sanmiao reduced joint swelling and improved immunity, and the results of non-targeted lipid metabolomics showed a total of 6 lipid core markers, which were hypothesised to play a therapeutic role in RA by modulating the glycerophospholipid metabolism and sphingolipid metabolism pathways. Using serum medicinal chemistry, we identified 19 blood components and predicted the targets related to RA, and combined with network pharmacology, we screened a total of 59 components and disease-cross-cutting targets, and the enrichment analysis and network pharmacology and KEGG results indicated that the core targets were TNF, IL6, MMP3, and the key metabolic pathways were TNF signaling pathway, lipid and The key metabolic pathways are TNF signaling pathway, lipid and atherosclerosis, rheumatoid arthritis, IL-17 signaling pathway and sphingolipid signaling pathway, etc. It was verified by molecular docking and ELISA experiments that palmatine, cyasterone, atractylenolide I, atractylenolide III, wogonoside, wogonin, phellodendrine, and berberine in Sanmiao could reduce the activity of these targets, thereby inhibiting the expression of inflammatory factors TNF-α, IL6, IL17, RF, MMP3, STAT3. CONCLUSIONS Sanmiao has a good therapeutic effect on RA, and for the first time, it was found that its potential mechanism of action may be to treat RA by decreasing the activities of TNF, IL6, MMP3 and modulating glycerophospholipid metabolism and sphingolipid metabolism.It provides a solid basis for the clinical application of Sanmiao wan.
Collapse
Affiliation(s)
- Chunlei Wan
- Mudanjiang Normal University, Mudanjiang, 157011, China.
| | - Siyu Sun
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuxing Han
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuqing Du
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Xueying Li
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Lei Zhang
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yue Yang
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Jingwei Hao
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuqi Wu
- Mudanjiang Normal University, Mudanjiang, 157011, China
| |
Collapse
|
3
|
Zhao S, Zhang J, Chen Y, Cui X, Liu H, Yan Y, Sun Y, Qi Y, Liu Y. The comprehensive mechanism underlying Schisandra polysaccharide in AD-like symptoms of Aβ25-35-induced rats based on hippocampal metabolomics and serum lipidomics techniques. J Pharm Biomed Anal 2023; 236:115717. [PMID: 37716276 DOI: 10.1016/j.jpba.2023.115717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
As is well documented, Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Meanwhile, Schisandra polysaccharide (SCP) has been reported to exert a protective effect on the nervous system and can regulate metabolic disorders in AD-like symptoms of amyloid β-peptide (Aβ) 25-35-induced rats. Nevertheless, the underlying mechanisms and metabolic markers for the diagnosis of AD are yet to be determined. This study aimed to explore the neuroprotective effect and potential mechanism of action of SCP in AD-like symptoms of Aβ25-35-induced rats by combining pharmacodynamics, metabolomics, and lipidomics. The pharmacodynamic results revealed that SCP significantly improved the spatial learning and long-term memory function and the morphology of neurons in the hippocampal CA1 region, alleviated inflammatory damage and oxidative stress, inhibited the activation of microglia and astrocytes, and increased the proportion of mature neurons of AD-like symptoms of Aβ25-35-induced rats. The results of hippocampal metabolomics and serum lipidomics showed 46 and 48 potential biomarkers were identified for the SCP treatment of AD, respectively. The involved pathways principally comprised lipid metabolism, amino acid metabolism, and energy metabolism. This study elucidates the neuroprotective effect of SCP in AD and its mechanism from the perspective of metabolomics and lipidomics and provides a theoretical basis for the therapeutic effect of SCP in AD.
Collapse
Affiliation(s)
- Shuo Zhao
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Jinpeng Zhang
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yufeng Chen
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Xinyuan Cui
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Haiqing Liu
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Ying Yan
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yuexiang Sun
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yongxiu Qi
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yuanyuan Liu
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
4
|
Du M, Yin Z, Xu K, Huang Y, Xu Y, Wen W, Zhang Z, Xu H, Wu X. Integrated mass spectrometry imaging and metabolomics reveals sublethal effects of indoxacarb on the red fire ant Solenopsis invicta. PEST MANAGEMENT SCIENCE 2023; 79:3122-3132. [PMID: 37013793 DOI: 10.1002/ps.7489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Indoxacarb, representing an efficient insecticide, is normally made into a bait to spread the poison among red fire ants so that it can be widely applied in the prevention and control of Solenopsis invicta. However, the potential toxicity mechanism of S. invicta in response to indoxacarb remains to be explored. In this study, we integrated mass spectrometry imaging (MSI) and untargeted metabolomics methods to reveal disturbed metabolic expression levels and spatial distribution within the whole-body tissue of S. invicta treated with indoxacarb. RESULTS Metabolomics results showed a significantly altered level of metabolites after indoxacarb treatment, such as carbohydrates, amino acids and pyrimidine and derivatives. Additionally, the spatial distribution and regulation of several crucial metabolites resulting from the metabolic pathway and lipids can be visualized using label-free MSI methods. Specifically, xylitol, aspartate, and uracil were distributed throughout the whole body of S. invicta, while sucrose-6'-phosphate and glycerol were mainly distributed in the abdomen of S. invicta, and thymine was distributed in the head and chest of S. invicta. Taken together, the integrated MSI and metabolomics results indicated that the toxicity mechanism of indoxacarb in S. invicta is closely associated with the disturbance in several key metabolic pathways, such as pyrimidine metabolism, aspartate metabolism, pentose and glucuronate interconversions, and inhibited energy synthesis. CONCLUSION Collectively, these findings provide a new perspective for the understanding of toxicity assessment between targeted organisms S. invicta and pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyi Du
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaijie Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yudi Huang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlin Wen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Yang M, Sun S, Jia X, Wen X, Tian X, Niu Y, Wei J, Jin Y, Du Y. Study on mechanism of hepatoprotective effect of Chrysanthemum morifolium Ramat. based on metabolomics with network analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123711. [PMID: 37059010 DOI: 10.1016/j.jchromb.2023.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Hangju (HJ), the dried flower heads of Chrysanthemum morifolium Ramat., has a significant hepatoprotective effect. However, its underlying protection mechanism against acute liver injury (ALI) has been unclear. An integrated strategy based on metabolomics with network analysis and network pharmacology was developed to explore the potential molecular mechanism of HJ on ALI protection. Firstly, differential endogenous metabolites were screened and identified by metabolomics approach and metabolic pathway analysis was performed by MetaboAnalyst. Secondly, marker metabolites were used to construct metabolite-response-enzyme-gene networks and discover hub metabolites and potential gene targets in network analysis. Thirdly, hub genes through the protein-protein interaction (PPI) network were acquired by the aid of network pharmacology. Finally, the gene targets were taken to intersect with the relevant active ingredients for validation by molecular docking. In total, 48 flavonoids were identified in HJ, which were associated with 8 potential therapeutic targets in network pharmacological analysis. Biochemistry and histopathology analysis demonstrated that HJ exerted hepatoprotective effects. 28 biomarkers were successfully identified as possible biomarkers for the prevention of ALI. The sphingolipid metabolic pathway and the glycerophospholipid metabolic pathway was considered a crucial signaling pathway by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, phosphatidylcholine and sphingomyelin were considered as hub metabolites. Twelve enzymes and 38 genes were considered as potential targets in the network analysis. Based on the combined analysis above, HJ was shown to modulate 2 key upstream targets, including PLA2G2A and PLA2G4A. Molecular docking showed that active compounds of HJ had high binding affinity with these key targets. In conclusion, the flavonoid components of HJ can inhibit PLA2 and regulate glycerophospholipid and sphingolipid metabolism pathway to delay the pathological process of ALI, which may be a potential mechanism of HJ against ALI.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shilin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xinming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xuqing Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xi Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yukun Niu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jinhuan Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
6
|
Ma CC, Jiang YH, Wang Y, Xu RR. The Latest Research Advances of Danggui Buxue Tang as an Effective Prescription for Various Diseases: A Comprehensive Review. Curr Med Sci 2022; 42:913-924. [PMID: 36245031 DOI: 10.1007/s11596-022-2642-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Danggui Buxue Tang (DBT) is composed of Astragali Radix and Angelicae Sinensis Radix in a weight ratio of 5:1. The recipe of the decoction is simple, and DBT has been widely used in the treatment of blood deficiency syndrome for more than 800 years in China. Studies on its chemical constituents show that saponins, flavonoids, volatile oils, organic acids, and polysaccharides are the main components of DBT. Many techniques such as third-generation sequencing, PCR-denaturing gradient gel electrophoresis, and HPLC-MS have been used for the quality control of DBT. DBT has a wide range of biological activities, including blood enhancement, antagonizing diabetic nephropathy, cardiovascular protection, immunity stimulation, estrogen-like effect, and antifibrosis, among others. In this paper, we summarize the recent research advances of DBT in terms of its components, pharmacological activities, and possible mechanisms of action as well as provide suggestions for further research.
Collapse
Affiliation(s)
- Chen-Chen Ma
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Rui-Rong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
7
|
Qian Y, Wang L, Zhang Z, Li X, Niu C, Li X, Ning E, Ma B. Physical-chemical properties of heteropolysaccharides from different processed forms of Rehmanniae Radix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Li J, Li X, Liu X, Wang X, Li J, Lin K, Sun S, Yue H, Dai Y. Untargeted metabolomic study of acute exacerbation of pediatric asthma via HPLC-Q-Orbitrap-MS. J Pharm Biomed Anal 2022; 215:114737. [DOI: 10.1016/j.jpba.2022.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
|
9
|
Tie D, Fan Z, Chen D, Chen X, Chen Q, Chen J, Bo H. Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1155-1171. [PMID: 35475977 DOI: 10.1142/s0192415x22500471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.
Collapse
Affiliation(s)
- Defu Tie
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Zhaohui Fan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Dan Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Xiao Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| |
Collapse
|
10
|
Yan P, Wei Y, Wang M, Tao J, Ouyang H, Du Z, Li S, Jiang H. Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice. Food Funct 2022; 13:4714-4733. [PMID: 35383784 DOI: 10.1039/d1fo04386b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alismatis rhizoma (AR), the dried rhizome of Alisma orientale (Sam) Juzep, is effective in treating hyperlipidemia, but the mechanisms involved require further exploration. This study evaluated the hypolipidemic properties of AR using an integrated strategy combining network pharmacology with metabolomics and lipidomics. Firstly, a hyperlipidemia mouse model induced by a high-fat diet was established to evaluate the therapeutic effects of AR. Secondly, plasma metabolomics and lipidomics were used to identify differential metabolites and lipids, and metabolic pathway analysis was performed using MetaboAnalyst. Thirdly, network pharmacology, based on the metabolic profile of AR in vivo, was used to discover potential therapeutic targets. Finally, key targets were obtained through a compound-target-metabolite network, which was verified by molecular docking and quantitative real-time PCR (qPCR). Biochemistry analysis and histological examinations showed that AR exerted hypolipidemic effects on hyperlipidemic mice. Seventy potential biomarkers for the AR treatment of hyperlipidemia were identified by metabolomics and lipidomics, which were mainly involved in lipid metabolism, energy metabolism and amino acid metabolism. Eighteen potentially active compounds were identified in the plasma of mice after oral administration of AR, which were associated with 83 potential therapeutic targets. The PPAR signaling pathway was considered a crucial signaling pathway of AR against hyperlipidemia by KEGG analysis. The joint analysis showed that 6 upstream key targets were regulated by AR, including ALB, TNF, IL1B, MMP9, PPARA and PPARG. Molecular docking showed that active compounds of AR had high binding affinity with these key targets. qPCR further demonstrated that AR could reverse the mRNA expression of these key targets in hyperlipidemic mice. This study integrates network pharmacology with metabolomics and lipidomics to reveal the regulatory effects of AR on endogenous metabolites and validates key therapeutic targets, and represents the most systematic and in-depth study on the hypolipidemic activity of AR.
Collapse
Affiliation(s)
- Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jianmei Tao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Metabolite profiling analysis of plasma, urine, and feces of rats after oral administration of Flos Chrysanthemi Indici preparation through UHPLC-Q-Exactive-MS combined with pharmacokinetic study of markers by UHPLC-QQQ-MS/MS. Anal Bioanal Chem 2022; 414:3927-3943. [DOI: 10.1007/s00216-022-04037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/01/2022]
|
12
|
Ma WP, Yin SN, Chen JP, Geng XC, Liu MF, Li HH, Liu M, Liu HB. Stimulating the Hematopoietic Effect of Simulated Digestive Product of Fucoidan from Sargassum fusiforme on Cyclophosphamide-Induced Hematopoietic Damage in Mice and Its Protective Mechanisms Based on Serum Lipidomics. Mar Drugs 2022; 20:201. [PMID: 35323500 PMCID: PMC8950290 DOI: 10.3390/md20030201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 μg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.
Collapse
Affiliation(s)
- Wei-Ping Ma
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Shi-Ning Yin
- Qingdao Institute for Food and Drug Control, Qingdao 266000, China;
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
| | - Jia-Peng Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Xi-Cheng Geng
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Ming-Fei Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Hai-Hua Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
| | - Ming Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (W.-P.M.); (J.-P.C.); (X.-C.G.); (M.-F.L.); (H.-H.L.)
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
13
|
Chen H, He Y. Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:91-131. [PMID: 34931589 DOI: 10.1142/s0192415x22500045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
Collapse
Affiliation(s)
- Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
14
|
Li X, Yang Y, Zhu Y, Ben A, Qi J. A novel strategy for discriminating different cultivation and screening odor and taste flavor compounds in Xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem 2022; 384:132519. [PMID: 35219989 DOI: 10.1016/j.foodchem.2022.132519] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A rapid strategy for discriminating Quanzhi (QZ) and Bozhi (BZ) of different cultivation of Xinhui tangerine peel was established by combining electronic nose, electronic tongue and chemometrics, which can be used as tool in the market to identify food fraud. 30 volatiles and 34 low molecular weight compounds of characteristic fingerprints of Xinhui tangerine peel of 108 samples were identified using GC-MS and UHPLC-Q-TOF-MS. Key compounds of BZ and QZ were screened and further compared by chemometrics. We discriminated odor and taste of BZ and QZ using electronic nose and electronic tongue, respectively. Our studies showed that β-myrcene, limonene, β-trans-Ocimene, γ-terpinene and terpinolene, etc, were screened the chief volatile flavor compounds by Spearman's rank correlation. Hydroxymethyl furfural, hesperitin, nobiletin and tangeretin, etc, were screened the key taste flavor compounds based gray relational analysis and partial least squares regression. Our study provides further insight for quality evaluation of Xinhui tangerine peel.
Collapse
Affiliation(s)
- Xinqi Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yahui Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yitian Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ailing Ben
- Nanjing XiaoZhuang University, College of Food Science, Nanjing Key Laboratory of Quality and Safety of Agricultural Products, PR China.
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
15
|
Fu S, Cheng R, Deng Z, Liu T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J Pharm Anal 2021; 11:709-716. [PMID: 35028175 PMCID: PMC8740115 DOI: 10.1016/j.jpha.2021.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
The Lianhua Qingwen (LHQW) capsule is a popular traditional Chinese medicine for the treatment of viral respiratory diseases. In particular, it has been recently prescribed to treat infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, due to its complex composition, little attention has been directed toward the analysis of chemical constituents present in the LHQW capsule. This study presents a reliable and comprehensive approach to characterizing the chemical constituents present in LHQW by high-performance liquid chromatography-Q Exactive-Orbitrap mass spectrometry (HPLC-Q Exactive-Orbitrap-MS) coupled with gas chromatography-mass spectrometry (GC-MS). An automated library alignment method with a high mass accuracy (within 5 ppm) was used for the rapid identification of compounds. A total of 104 compounds, consisting of alkaloids, flavonoids, phenols, phenolic acids, phenylpropanoids, quinones, terpenoids, and other phytochemicals, were successfully characterized. In addition, the fragmentation pathways and characteristic fragments of some representative compounds were elucidated. GC-MS analysis was conducted to characterize the volatile compounds present in LHQW. In total, 17 compounds were putatively characterized by comparing the acquired data with that from the NIST library. The major constituent was menthol, and all the other compounds were terpenoids. This is the first comprehensive report on the identification of the major chemical constituents present in the LHQW capsule by HPLC-Q Exactive-Orbitrap-MS, coupled with GC-MS, and the results of this study can be used for the quality control and standardization of LHQW capsules.
Collapse
Affiliation(s)
- Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rongrong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
16
|
Danggui Buxue Decoction Ameliorates Inflammatory Bowel Disease by Improving Inflammation and Rebuilding Intestinal Mucosal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8853141. [PMID: 33531923 PMCID: PMC7837767 DOI: 10.1155/2021/8853141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
Objective This study aimed to determine whether Danggui Buxue decoction (DGBX) can improve inflammatory bowel disease (IBD) by regulating immunity and promoting intestinal mucosal repair. Method Dextran sulfate sodium (DSS) was used to induce the IBD model. Drugs (DGBX or saline) were administered to mice, which were randomly divided into three groups (control, model, and experimental groups). Hematoxylin and eosin staining of intestinal tissues was conducted to observe for morphological changes. Changes in cytokines and immune cells in the intestinal tissues were detected by enzyme-linked immunosorbent assay and flow cytometry. Immunofluorescence techniques were used to assess the status of the intestinal mucosal repair. Results This study found that treatment with DGBX can effectively improve the inflammatory state and pathological structure of the IBD model. DGBX not only can significantly change the composition of intestinal mucosal immune cells and promote the regression of inflammation but also significantly increase the proliferation of intestinal epithelial cells and promote the rapid repair of intestinal mucosal barrier injury compared with the model group (p < 0.05). Conclusion Taking these results, DGBX shows promising protective effects on IBD by regulating immunity and promoting intestinal mucosal repair.
Collapse
|