1
|
Hussain K, Ahmad R, Hassan S, Khan MY, Ahmad A, Alshammari MB, Ali MS, Lakho SA, Lee BI. Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure-based sensor. Anal Biochem 2024; 693:115595. [PMID: 38909770 DOI: 10.1016/j.ab.2024.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.
Collapse
Affiliation(s)
- Kanwal Hussain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Rafiq Ahmad
- 'New-Senior' Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sohail Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Muhammad Y Khan
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan.
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Muhammad S Ali
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Saeed A Lakho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Jamshoro, 76080. Sindh, Pakistan
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Ghalkhani M, Sohouli E, Dehkordi ZS. Electrochemical sensor based on mesoporous g-C 3N 4/N-CNO/gold nanoparticles for measuring oxycodone. Sci Rep 2024; 14:17221. [PMID: 39060331 PMCID: PMC11282311 DOI: 10.1038/s41598-024-68310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Oxycodone, often used as an analgesic, is a potent opioid. While its effectiveness has been proven in the control of moderate to acute pain, excessive use of oxycodone imposes heart failure, heart palpitations, reduction of red blood cells, bone pain, and even death. Therefore, monitoring the oxycodone concentration in blood is vital for emergency care. For this purpose, a novel electrochemical sensor was designed based on a glassy carbon electrode modified with mesoporous g-C3N4 (M-C3N4), carbon nano-onions doped with nitrogen (N-CNO), and gold nanoparticles. At first, the SEM and XRD techniques were employed to characterize prepared M-C3N4 and N-CNO samples. The electro-oxidation behavior of the oxycodone was evaluated by cyclic and differential pulse voltammetric methods. Based on the influence of the potential scanning rate and solution pH on the voltammetric response of oxycodone oxidation, a redox mechanism was proposed. A 16 nM detection limit was acquired for the oxycodone analysis with a linear response in the 0.05-150 µM range. This sensor showed a remarkable ability for oxycodone detection in plasma samples. The long-term stability, superior selectivity, and reproducibility of this sensor prove its ability to measure oxycodone accurately and precisely in authentic spices.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Zeinab Saberi Dehkordi
- Department of Chemistry, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Alterary SS. Construction of novel potentiometric sensors modified with biogenically synthesized metal oxide nanoparticles for sensitive detection of the opioid agonist-antagonist nalbuphine hydrochloride in its injection. Heliyon 2023; 9:e20510. [PMID: 37800067 PMCID: PMC10550502 DOI: 10.1016/j.heliyon.2023.e20510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Novel and sensitive potentiometric sensors were described for the assay of nalbuphine HCl (NBP) in authentic powder and injection samples. The developed sensors were modified with alumina nanoparticles (Al2O3NPs) and copper oxide nanoparticles (CuONPs). The nanoscale materials were synthesized using the extract of Salvia officinalis leaves in an environmentally friendly manner. The synthesized metal oxides were fully confirmed by various analytical techniques. Scanning electron microscope confirmed the morphology of nanosized materials with even distribution and particle size of 55.07 ± 4.15 and 59.48 ± 4.50 nm for Al2O3NPs and CuONPs, respectively. The modified sensors were prepared in three different steps. Nalbuphine hydrochloride was mixed with phosphomolybdic acid to prepare the sensor material nalbuphine phosphomolybdate (NBP-PM). It was then mixed with polyvinyl chloride in the presence of o-nitrophenyl ether and metal oxide nanoparticles to form the membrane matrix. Finally, a copper wire was coated with the sensing material. Excellent potentials of 1.0 × 10-8-1.0 × 10-2 and 1.0 × 10-9-1.0 × 10-2 mol L-1 were measured with lower assay limits of 4.8 × 10-9 and 5.0 × 10-10 mol L-1. The average detection % were 99.28 ± 0.58% and 99.52 ± 0.28% for NBP-PM-Al2O3NPs and NBP-PM-CuONPs, correspondingly. The suitability of the described sensors was investigated in terms of various validation criteria, and the modified sensors exposed excellent applicability and insurance for the quantification of nalbuphine hydrochloride in its bulk samples and injections compared with another standard sensor. It is obvious that the developed NBP-PM-Al2O3NPs and NBP-PM-CuONPs will serve as suitable sensors for the determination of NBP.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
4
|
Zafar K, Wasim M, Fatima B, Hussain D, Mehmood R, Najam-Ul-Haq M. Quantification of tramadol and serotonin by cobalt nickel tungstate in real biological samples to evaluate the effect of analgesic drugs on neurotransmitters. Sci Rep 2023; 13:10239. [PMID: 37353529 PMCID: PMC10290146 DOI: 10.1038/s41598-023-37053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
In this work, CoNiWO4 nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO4-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0-60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO4-GCE) was applied to determine tramadol and serotonin in biological samples.
Collapse
Affiliation(s)
- Komal Zafar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
5
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
6
|
Hassan SS, Kamel AH, Fathy MA. A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Anal Chim Acta 2022; 1227:340239. [DOI: 10.1016/j.aca.2022.340239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
|
7
|
Yence M, Cetinkaya A, Kaya SI, Ozkan SA. Recent Developments in the Sensitive Electrochemical Assay of Common Opioid Drugs. Crit Rev Anal Chem 2022; 54:882-895. [PMID: 35853096 DOI: 10.1080/10408347.2022.2099732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Opioids are a class of drugs used to treat moderate to severe pain and have short-term adverse effects. Nevertheless, they are considered necessary for pain management. However, well-known hazards are connected with an opioid prescription, such as overuse, addiction, and overdose deaths. For example, the death rate from opioid analgesic poisoning in the USA approximately doubled, owing to the overuse and addiction of opioid analgesics. Also, opioids are a very important group of analytes in forensic chemistry, so it is necessary to use reliable, fast, and sensitive analytical tools to determine opioid analgesics. This review focuses on the opioid overdose crisis, the properties of commonly used opioid drugs, their mechanism, effects, and some chromatographic and spectroscopic detection methods are explained briefly. Then most essentially recent developments covering the last ten years in the sensitive electrochemical methods of common opioid analgesics, their innovations and features, and future research directions are presented.
Collapse
Affiliation(s)
- Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
9
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
10
|
Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, Shafqat SS, Rasheed T, Bilal M. Metal-Organic Framework-Based Composites for the Detection and Monitoring of Pharmaceutical Compounds in Biological and Environmental Matrices. WATER, AIR, AND SOIL POLLUTION 2022; 233:493. [PMID: 36466935 PMCID: PMC9685123 DOI: 10.1007/s11270-022-05904-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/13/2022] [Indexed: 05/10/2023]
Abstract
The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Dure Najaf Iqbal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695 Poznan, PL Poland
| |
Collapse
|
11
|
|
12
|
Yang R, Fan B, Wang S, Li L, Li Y, Li S, Zheng Y, Fu L, Lin CT. Electrochemical Voltammogram Recording for Identifying Varieties of Ornamental Plants. MICROMACHINES 2020; 11:E967. [PMID: 33138269 PMCID: PMC7693950 DOI: 10.3390/mi11110967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
An electrochemical voltammogram recording method for plant variety identification is proposed. Electrochemical voltammograms of Vistula, Andromeda, Danuta, Armandii 'Apple Blossom,' Proteus, Hagley Hybrid, Violet Elizabeth, Kiri Te Kanawa, Regina, and Veronica's Choice were recorded using leaf extracts with two solvents under buffer solutions. The voltametric data recorded under different conditions were derived as scatter plots, 2D density patterns, and hot maps for variety identification. In addition, the voltametric data were further used for genetic relationship studies. The dendrogram deduced from the voltammograms was used as evidence for relationship study. The dendrogram deduced from voltametric data suggested the Andromeda, Danuta, Proteus, Regina, and Hagley Hybrid were closely related, while Violet Elizabeth and Veronica's Choice were closely related. In addition, Vistula and Armandii 'Apple Blossom' could be considered outliers among the varieties.
Collapse
Affiliation(s)
- Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Boyuan Fan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Shu’an Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Linfang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yan S, Yue Y, Su L, Hao M, Wang X, Zuo T. Development of Electrochemical Oscillation Method for Identification of Prunus persica, Prunus davidiana, and Prunus armeniaca Nuts. Front Chem 2020; 8:748. [PMID: 33024743 PMCID: PMC7516034 DOI: 10.3389/fchem.2020.00748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, an electrochemical oscillation system has been developed using the Belousov-Zhabotinsky reaction. The effect of the combination of each reagent, reaction temperature, and stirring speed on the induction period, oscillating period, and oscillating life were optimized. The nuts of Prunus persica, Prunus davidiana, and Prunus armeniaca have been widely used for medical purposes. The proposed electrochemical oscillation system was then used for the identification of P. persica, P. davidiana, and P. armeniaca. Three nuts exhibited very different electrochemical oscillation profiles. The dendrogram was divided into three main principal infrageneric clades. Each cluster only contains one species, suggesting that no outlier was observed in this study. Based on the discussed results, we proposed a simple method for herbal medicine identification.
Collapse
Affiliation(s)
- Shuai Yan
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yinzi Yue
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Ting Zuo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|