1
|
Ciarrocchi D, Pecoraro PM, Zompanti A, Pennazza G, Santonico M, di Biase L. Biochemical Sensors for Personalized Therapy in Parkinson's Disease: Where We Stand. J Clin Med 2024; 13:7458. [PMID: 39685917 DOI: 10.3390/jcm13237458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson's disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring. Biochemical sensing of levodopa offers a promising approach for real-time therapeutic feedback, potentially sustaining an optimal motor state throughout the day. These sensors vary in invasiveness, encompassing techniques like microdialysis, electrochemical non-enzymatic sensing, and enzymatic approaches. Electrochemical sensing, including wearable solutions that utilize reverse iontophoresis and microneedles, is notable for its potential in non-invasive or minimally invasive monitoring. Point-of-care devices and standard electrochemical cells demonstrate superior performance compared to wearable solutions; however, this comes at the cost of wearability. As a result, they are better suited for clinical use. The integration of nanomaterials such as carbon nanotubes, metal-organic frameworks, and graphene has significantly enhanced sensor sensitivity, selectivity, and detection performance. This framework paves the way for accurate, continuous monitoring of levodopa and its metabolites in biofluids such as sweat and interstitial fluid, aiding real-time motor performance assessment in Parkinson's disease. This review highlights recent advancements in biochemical sensing for levodopa and catecholamine monitoring, exploring emerging technologies and their potential role in developing closed-loop therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Davide Ciarrocchi
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Zompanti
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lazzaro di Biase
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
2
|
Wang T, Jafar NNA, Al-Rihaymee AMA, Alhameedi DY, Rasen FA, Hashim FS, Hussein TK, Ramadan MF, Alasedi KK, Suliman M, Alawadi AH. Highly efficient electrocatalytic oxidation of levodopa as a Parkinson therapeutic drug based on modified screen-printed electrode. Heliyon 2024; 10:e34689. [PMID: 39149019 PMCID: PMC11325779 DOI: 10.1016/j.heliyon.2024.e34689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The current study presents the creation of a straightforward and sensitive sensor based on ZnO/Co3O4 nanocomposite modified screen-printed electrode (ZnO/Co3O4NC/SPE) for levodopa determination. At ZnO/Co3O4NC/SPE, an oxidative peak for levodopa solution in pH 6.0 phosphate buffer solution (PBS) were seen that were both more resolved and more enhanced. Levodopa was measured using differential pulse voltammetry (DPV), which showed an excellent linear range (0.001-800.0 μM) and detection limit (0.81 nM). The presence of interference did not affect the electrochemical response of levodopa at ZnO/Co3O4NC/SPE, demonstrating high selectivity. Levodopa in a real samples have been successfully detected using the manufactured sensor.
Collapse
Affiliation(s)
- Tan Wang
- Three Gorges University, College of Basie Medical Scienees, 443002, China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Afrah Majeed Ahmed Al-Rihaymee
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of health & medical Technology, Sawa University, Almuthana, Iraq
| | - Fadhil A Rasen
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Furqan S Hashim
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Kasim Kadhim Alasedi
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
3
|
Park S, Kim YJ, Kostal E, Matylitskaya V, Partel S, Ryu W. Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensor. Biosens Bioelectron 2022; 220:114912. [DOI: 10.1016/j.bios.2022.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
4
|
Park SW, Kim TE, Jung YK. Glutathione-decorated fluorescent carbon quantum dots for sensitive and selective detection of levodopa. Anal Chim Acta 2021; 1165:338513. [PMID: 33975692 DOI: 10.1016/j.aca.2021.338513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Levodopa has been a standard drug for treating Parkinson's disease since the 1960s, but it has caused many side effects such as wearing-off, motor fluctuation, and dystonia. In this work, we developed glutathione-conjugated carbon quantum dots (GSH-CQDs) as a novel fluorescent sensor for sensitive and selective detection of levodopa. The GSH-CQDs were prepared by EDC/NHS coupling reaction of glutathione (GSH) with amine-functionalized CQDs (N-CQDs) synthesized using meta-phenylenediamine and ethylenediamine. The synthesized GSH-CQDs emitted bright green fluorescence with a high quantum yield (QY) of 22.42 ± 6.88%. However, upon the addition of levodopa to GSH-CQDs under alkaline conditions, the fluorescence of GSH-CQDs was quenched. Since levodopa is converted to dopaquinone in an alkaline environment, it is presumed that thiol groups of GHS-CQDs form covalent bonds with dopaquinone, causing fluorescence quenching through photoinduced electron transfer. Therefore, as the concentration of levodopa increased, the fluorescence intensity of GSH-CQDs was gradually decreased. Under optimal conditions, a linear response was observed in the range of 0.05-1 μM, and limit of detection (LOD) was determined to be 0.057 μM. The GSH-CQDs exhibited high specificity to levodopa over other non-target biological substances, quinone derivatives, and Parkinson's medications. Furthermore, the capability of this GSH-CQDs sensor for monitoring levodopa in human serum were validated with excellent precision and recovery rates of 100.20-103.33%.
Collapse
Affiliation(s)
- Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Tae Eun Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| |
Collapse
|