1
|
Mageswaran N, Zainal SH, Hassan NI, Abd Karim NH, Ismail NAS. Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease. Diagnostics (Basel) 2025; 15:940. [PMID: 40218291 PMCID: PMC11988804 DOI: 10.3390/diagnostics15070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
Coronary artery disease (CAD) is one of the primary causes of morbidity and death worldwide. Premature CAD (pCAD) is the term used to describe the 3-10% of CAD occurrences that occur in people under 45 worldwide. Diagnostic difficulties arise from the different risk factor profiles of pCAD and late-onset CAD. Better cardiovascular risk prediction in younger populations has been made possible by the development of biomarker detection tools. This can be applied to a diagnostic tool, including electrochemical biosensors, which have been predicted to be instrumental because of their adaptability for point-of-care applications for quicker diagnoses. These biosensors provide efficient, scalable, and reasonably priced solutions for the quick identification and tracking of CAD. Multiplex biomarker detection has been adopted as a viable approach for early diagnosis and risk assessment due to the constraints of using a single biomarker for pCAD diagnosis. Thus, this study looks at current developments in biosensing technology and discusses established and new cardiac biomarker panels for pCAD identification.
Collapse
Affiliation(s)
- Nanthini Mageswaran
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Sarah Husnaini Zainal
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.I.H.); (N.H.A.K.)
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.I.H.); (N.H.A.K.)
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
2
|
Yang Z, Chen J, Liu M, Huang J, Liang J, Zhu M, Shen Y, Li D, Lei C, Sun X. An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:990-998. [PMID: 39749362 DOI: 10.1039/d4ay02021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO2 film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]5/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)]5 thin films and designed as meander structures with closed magnetic flux. The MFC was fabricated using 3D printing and inverted molding techniques, designed with a solution by mixing the reaction region, magnetic separation region and detection region. Peelable SiO2 film units with the same size as the MI sensing element were used as the immunoreactivity interface of the bioanalytes. Two large PMs were placed directly below the MI sensing unit to provide a bias magnetic field, and the smaller PM was embedded in MCF for magnetic separation function. Different concentrations of the biological target (cTnI antigen)-, PBS buffer-, and Dynabeads-labeled polyclonal cTnI antibody solution were injected sequentially into the MCF. After immunoreactivity and magnetic separation, a classical sandwich immunoreaction process occurred on the surface of the monoclonal antibody-modified SiO2 film via self-assembling process in the reaction region of the MFC. The fundamental principle for evaluation of cTnI was based on variations of the MI signal under different concentrations of the biological target coupled with different numbers of Dynabeads. It was demonstrated that the mentioned MI-based magnetic platform could perform quantitative detection analyses over a range of cTnI concentrations (lowest concentration = 0.1 ng mL-1 and highest concentration = 100 ng mL-1). The proposed MI-based magnetic platform provides a sensitive, reliable, stable and reusable bioanalytical platform, and it has potential in future biomedical applications.
Collapse
Affiliation(s)
- Zhen Yang
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Jingyuan Chen
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Mengyu Liu
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Jiabao Huang
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Jieping Liang
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Mengjiao Zhu
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Yuanwei Shen
- Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Gulin, Guangxi 541004, China.
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541004, China
| | - Danqing Li
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Chong Lei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro-Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuecheng Sun
- Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Liu KH, Thomas JL, Chu PC, Ciou JC, Chen CY, Lin HY, Lee MH. Electrochemical Determination of B-Type Natriuretic Peptide with an Epitope-Imprinted Polymer-Based Sensor. BIOSENSORS 2024; 14:533. [PMID: 39589992 PMCID: PMC11591701 DOI: 10.3390/bios14110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
B-type natriuretic peptides (BNP) are produced and secreted by the myocardium to reduce blood pressure and cardiac load. They cause vasodilation, natriuresis, growth suppression, and inhibition of the sympathetic nervous system and the renin-angiotensin-aldosterone system. The measurement of plasma BNP levels provides clinically useful information concerning the diagnosis and management of left ventricular dysfunction and heart failure, complementing other diagnostic testing procedures. In this work, three epitopes from the N-terminal (BNPnt), C-terminal (BNPct), and the cystine-bridged cyclic peptides (BNPr) of B-type natriuretic peptides were synthesized as templates for molecular imprinting. These peptides were doped into aniline (AN) and m-aminobenzenesulfonic acid (MSAN) for electropolymerization, thus forming epitope-imprinted poly(AN-co-MSAN) conductive films (EIPs). The monomer ratio was optimized using the electrochemical signals during polymerization. The optimized films were then characterized using a scanning electron microscope (SEM), atomic force microscope (AFM), and AC impedance. The electrochemical response of the films to the target peptides and to BNP was then measured. The sensing range of the EIPs-coated electrodes was from 0.001 to 1000 pg/mL for BNP. Finally, the BNP concentration in diluted serum samples was measured with the BNPrIP-coated electrode, giving 3.15 ± 0.07 pg/mL. By spiking the sample with known BNP concentrations, the accuracy was determined to be better than ±5%.
Collapse
Affiliation(s)
- Kai-Hsi Liu
- Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Department of Internal Medicine, Division of Cardiology, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pei-Chia Chu
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Jing-Chen Ciou
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Chuen-Yau Chen
- Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
4
|
Chen JN, Hasabnis GK, Akin E, Gao G, Usha SP, Süssmuth R, Altintas Z. Developing innovative point-of-care electrochemical sensors empowered by cardiac troponin I-responsive nanocomposite materials. SENSORS AND ACTUATORS B: CHEMICAL 2024; 417:136052. [DOI: 10.1016/j.snb.2024.136052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Tukur F, Mabe T, Liu M, Tukur P, Wei J. A Plasmonic Nanoledge Array Sensor for Selective Detection of Cardiovascular Disease Biomarkers in Human Whole Blood. ACS APPLIED NANO MATERIALS 2024; 7:20024-20033. [PMID: 39296866 PMCID: PMC11406491 DOI: 10.1021/acsanm.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Optical sensors face challenges when detecting ultralow amounts of analytes in whole blood, including signal quenching due to optical absorption and false positives due to nonspecific binding. This study introduces gold nanoscale array features termed nanoledges (NLs), which interact with incident white light to produce a transmitted surface plasmon resonance (tSPR) signal. This extraordinary optical transmission (EOT) spectrum occurs in the near-infrared (NIR) region, thereby minimizing signal quenching caused by visible-light absorption from blood proteins and pigments. To develop a sensitive, selective, and label-free optical biosensor for detecting various levels of cardiac troponin I (cTnI) in very small volumes of whole blood samples, DNA aptamers are tethered to the NL surface, specifically binding to the cTnI biomarker. This biological binding activity alters the refractive index at the NL surface, causing a peak shift in the EOT spectrum and enabling quantification of cTnI levels. The NL array chip demonstrated high sensitivity for cTnI detection in buffer, human serum (HS), and human whole blood (HB), with detection limits of 0.079, 0.084, and 0.097 ng/mL, respectively. Control measurements using blank target mediums and those containing up to 125 ng/mL of other proteins, such as myoglobin, creatine kinase, and heparin, showed minimal interference and high specificity. The NL plasmonic array's performance in biosensing underscores its promise for clinical analysis and its potential development as a point-of-care platform for early cardiovascular disease (CVD) diagnostics.
Collapse
Affiliation(s)
- Frank Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Taylor Mabe
- 3i Nanotech, Inc., 2901 E. Gate City Blvd, Greensboro, North Carolina 27401, United States
| | - Mengxin Liu
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Panesun Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
- 3i Nanotech, Inc., 2901 E. Gate City Blvd, Greensboro, North Carolina 27401, United States
| |
Collapse
|
6
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
Lv W, Li Q, Tang Y, Qin Y, Zhou X, Zhao X, Zheng Z, Huang B. AlphaLISA-Based Immunoassay for Detection of Troponin T in Serum of Patients with Acute Myocardial Infarction. J Fluoresc 2024:10.1007/s10895-024-03775-w. [PMID: 38780833 DOI: 10.1007/s10895-024-03775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Survival and prognosis of patients with acute myocardial infarction (AMI) are highly dependent on rapid and accurate diagnosis of myocardial damage. Troponin T is the primary diagnostic biomarker and is widely used in clinical practice. Amplified luminescent proximity homogeneous assay (AlphaLISA) may provide a solution to rapidly detect a small amount of analyte through molecular interactions between special luminescent donor beads and acceptor bead. Here, a double-antibody sandwich assay was introduced into AlphaLISA for rapid detection for early diagnosis of AMI and disease staging evaluation. The performance of the assay was evaluated. The study found that the cTnT assay has a linear range of 48.66 to 20,000 ng/L with a limit of detection of 48.66 ng/L. In addition, the assay showed no cross-reactivity with other classic biomarkers of myocardial infarction and was highly reproducible with intra- and inter-batch coefficients of variation of less than 10%, notably, only 3 min was taken, which is particularly suitable for clinical diagnosis. These results suggest that our method can be conveniently applied in the clinic to determine the severity of the patient's condition.
Collapse
Affiliation(s)
- Wei Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Qian Li
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Tang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China.
| | - Zhencang Zheng
- Taizhou Central Hospital(Taizhou University Hospital), Taizhou, 318000, China.
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, China.
| |
Collapse
|
8
|
Kayani M, Fatima N, Yarra PC, Almansouri NE, K D, Balasubramanian A, Parvathaneni N, Mowo-Wale AG, Valdez JA, Nazir Z. Novel Biomarkers in Early Detection of Heart Failure: A Narrative Review. Cureus 2024; 16:e53445. [PMID: 38435138 PMCID: PMC10909379 DOI: 10.7759/cureus.53445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Heart failure (HF) represents a significant global health challenge, characterized by a variety of symptoms resulting from cardiac dysfunction. This dysfunction often leads to systemic and pulmonary congestion. The pathophysiology of HF is complex, involving stimulation of the sympathetic nervous system, which is insufficiently balanced by the release of natriuretic peptide. This imbalance leads to progressive hypertrophy and dilatation of the heart's chambers, impairing its pumping efficiency and increasing the risk of arrhythmias and conduction disorders. The prevalence of HF is exceptionally high in industrialized nations and is expected to increase owing to an aging population and advancements in diagnostic methods. This study emphasizes the critical role of early diagnosis in reducing morbidity and mortality associated with HF, focusing specifically on the evolving importance of biomarkers in managing this condition. Biomarkers have played a key role in transforming the diagnosis and treatment of HF. Traditional biomarkers such as b-type natriuretic peptide and N-terminal pro-b-type natriuretic peptide have been widely adopted for their cost-effectiveness and ease of access. However, the rise of novel biomarkers such as growth differentiation factor 15 and adrenomedullin has shown promising results, offering superior sensitivity and specificity. These new biomarkers enhance diagnostic accuracy, risk stratification, and prognostic evaluation in HF patients. Despite these advancements, challenges remain, such as limited availability, high costs, and the need for further validation in diverse patient populations. Through a comprehensive literature review across databases such as PubMed, Google Scholar, and the Cochrane Library, this study compiles and analyzes data from 18 relevant studies, offering a detailed understanding of the current state of HF biomarkers. The study examines both traditional and emerging biomarkers such as galectin-3 and soluble suppression of tumorigenicity 2 in HF, exploring their clinical roles and impact on patient outcomes.
Collapse
Affiliation(s)
- Maryam Kayani
- Cardiology, Shifa Tameer-e-Millat University Shifa College of Medicine, Islamabad, PAK
| | - Neha Fatima
- Internal Medicine, Lisie Hospital, Kochi, IND
| | | | - Naiela E Almansouri
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, University of Tripoli, Tripoli, LBY
| | - Deepshikha K
- Cardiology, Pondicherry Institute of Medical Sciences, Pondicherry, IND
| | | | | | | | - Josue A Valdez
- General Practice, Universidad Autónoma de Durango, Los Mochis, MEX
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
9
|
Colom G, Hernandez-Albors A, Barallat J, Galan A, Bayes-Genis A, Salvador JP, Marco MP. A multiplexed immunochemical microarray for the determination of cardiovascular disease biomarkers. Mikrochim Acta 2023; 191:53. [PMID: 38151630 PMCID: PMC10752916 DOI: 10.1007/s00604-023-06119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A fluorescence antibody microarray has been developed for the determination of relevant cardiovascular disease biomarkers for the analysis of human plasma samples. Recording characteristic protein molecular fingerprints to assess individual's states of health could allow diagnosis to go beyond the simple identification of the disease, providing information on its stage or prognosis. Precisely, cardiovascular diseases (CVDs) are complex disorders which involve different degenerative processes encompassing a collection of biomarkers related to disease progression or stage. The novel approach that we propose is a fluorescent microarray chip has been developed accomplishing simultaneous determination of the most significant cardiac biomarkers in plasma aiming to determine the CVD status stage of the patient. As proof of concept, we have chosen five relevant biomarkers, C-reactive protein (CRP) as biomarker of inflammation, cystatin C (CysC) as biomarker of renal failure that is directly related with heart failure, cardiac troponin I (cTnI) as already established biomarker for cardiac damage, heart fatty acid binding protein as biomarker of ischemia (H-FABP), and finally, NT-proBNP (N-terminal pro-brain natriuretic peptide), a well-established heart failure biomarker. After the optimization of the multiplexed microarray, the assay allowed the simultaneous determination of 5 biomarkers in a buffer solution reaching LODs of 15 ± 5, 3 ± 1, 24 ± 3, 25 ± 3, and 3 ± 1 ng mL-1, for CRP, CysC, H-FABP, cTnI, and NT-proBNP, respectively. After solving the matrix effect, and demonstrating the accuracy for each biomarker, the chip was able to determine 24 samples per microarray chip. Then, the microarray has been used on a small pilot clinical study with 29 plasma samples from clinical patients which suffered different CVD and other related disorders. Results show the superior capability of the chip to provide clinical information related to the disease in terms of turnaround time (1 h 30 min total assay and measurement) and amount of information delivered in respect to reference technologies used in hospital laboratories (clinical analyzers). Despite the failure to detect c-TnI at the reported threshold, the microarray technology could be a powerful approach to diagnose the cardiovascular disease at early stage, monitor its progress, and eventually providing information about an eminent potential risk of suffering a myocardial infarction. The microarray chip here reported could be the starting point for achieving powerful multiplexed diagnostic technologies for the diagnosis of CVDs or any other pathology for which biomarkers have been identified at different stages of the disease.
Collapse
Affiliation(s)
- Gloria Colom
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Alejandro Hernandez-Albors
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Jaume Barallat
- Biochemistry Department, Metropolitan North Clinical Laboratory (LCMN), Germans Trias i Pujol Universitary Hospital, Ctra. de Canyet, s/n, Badalona, Barcelona, Spain
| | - Amparo Galan
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
| | - Antoni Bayes-Genis
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Maria-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| |
Collapse
|
10
|
Polonschii C, Potara M, Iancu M, David S, Banciu RM, Vasilescu A, Astilean S. Progress in the Optical Sensing of Cardiac Biomarkers. BIOSENSORS 2023; 13:632. [PMID: 37366997 PMCID: PMC10296523 DOI: 10.3390/bios13060632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Biomarkers play key roles in the diagnosis, risk assessment, treatment and supervision of cardiovascular diseases (CVD). Optical biosensors and assays are valuable analytical tools answering the need for fast and reliable measurements of biomarker levels. This review presents a survey of recent literature with a focus on the past 5 years. The data indicate continuing trends towards multiplexed, simpler, cheaper, faster and innovative sensing while newer tendencies concern minimizing the sample volume or using alternative sampling matrices such as saliva for less invasive assays. Utilizing the enzyme-mimicking activity of nanomaterials gained ground in comparison to their more traditional roles as signaling probes, immobilization supports for biomolecules and for signal amplification. The growing use of aptamers as replacements for antibodies prompted emerging applications of DNA amplification and editing techniques. Optical biosensors and assays were tested with larger sets of clinical samples and compared with the current standard methods. The ambitious goals on the horizon for CVD testing include the discovery and determination of relevant biomarkers with the help of artificial intelligence, more stable specific recognition elements for biomarkers and fast, cheap readers and disposable tests to facilitate rapid testing at home. As the field is progressing at an impressive pace, the opportunities for biosensors in the optical sensing of CVD biomarkers remain significant.
Collapse
Affiliation(s)
- Cristina Polonschii
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| | - Madalina Iancu
- “Professor Dr. Agrippa Ionescu” Clinical Emergency Hospital, 7 Architect Ion Mincu Street, 011356 Bucharest, Romania;
| | - Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
- Faculty of Chemistry, University of Bucharest, 4-12 “Regina Elisabeta” Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| |
Collapse
|
11
|
Rudewicz-Kowalczyk D, Grabowska I. Simultaneous Electrochemical Detection of LDL and MDA-LDL Using Antibody-Ferrocene or Anthraquinone Conjugates Coated Magnetic Beads. Int J Mol Sci 2023; 24:ijms24066005. [PMID: 36983078 PMCID: PMC10056855 DOI: 10.3390/ijms24066005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The simultaneous detection of atherosclerotic cardiovascular disease (ACSVD) biomarkers was recently of great scientific interest. In this work, magnetic beads-based immunosensors for the simultaneous detection of low density lipoprotein (LDL) and malondialdehyde-modified low density lipoprotein (MDA-LDL) were presented. The approach proposed was based on the formation of two types of specific immunoconjugates consisting of monoclonal antibodies: anti-LDL or anti-MDA-LDL, together with redox active molecules: ferrocene and anthraquinone, respectively, coated on magnetic beads (MBs). The decrease in redox agent current in the concentration range: 0.001-1.0 ng/mL for LDL and 0.01-10.0 ng/mL for MDA-LDL, registered by square wave voltammetry (SWV), was observed upon the creation of complex between LDL or MDA-LDL and appropriate immunoconjugates. The detection limits of 0.2 ng/mL for LDL and 0.1 ng/mL for MDA-LDL were estimated. Moreover, the results of selectivity against the possible interferents were good, as human serum albumin (HSA) and high density lipoprotein (HDL), stability and recovery studies demonstrated the potential of platform proposed for early prognosis and diagnosis of ASCVD.
Collapse
Affiliation(s)
- Daria Rudewicz-Kowalczyk
- Institute of Animal Reproduction of Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction of Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
12
|
Motamed H, Mohammadi M, Tayebi Z, Rafati Navaei A. The diagnostic utility of creatine kinase-MB versus total creatine
phosphokinase ratio in patients with non-ST elevation myocardial infarction from
unstable angina. SAGE Open Med 2023; 11:20503121221148609. [PMID: 36969724 PMCID: PMC10034342 DOI: 10.1177/20503121221148609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 03/24/2023] Open
Abstract
Objective: The present study seeks to find a way to quickly and correctly differentiate
myocardial infarction from unstable angina by measuring the creatine
kinase-MB/creatine phosphokinase ratio and comparing in non-ST elevation
myocardial infarction patients with unstable angina at different time
intervals, to improve the health quality of patients with coronary artery
disease. Methods: The present study is a retrospective epidemiological analysis of 260 patients
with non-ST elevation myocardial infarction and 260 patients with unstable
angina, including age, sex, creatine kinase-MB, and creatine phosphokinase
biomarkers at two-time intervals, including referral (4–8 h from the onset
of pain) as the first interval, and 8 h after the first sampling was
extracted as the second interval. Moreover, the delta of the creatine
kinase-MB/creatine phosphokinase ratio during two interval times was
measured. Results: In non-ST elevation myocardial infarction patients in the first and second
intervals, creatine kinase-MB/creatine phosphokinase ratio was 32.7 and
33.8% higher than the normal laboratory cutoff (positive), respectively, and
in the group of unstable angina patients, this index was positive in 31.9
and 30.4% of patients, respectively. There was no significant difference
between the mean creatine kinase-MB to creatine phosphokinase index between
the patients with non-ST elevation myocardial infarction and unstable angina
(p = 0.507). In the first interval, the sensitivity and
specificity of this index in differentiating non-ST elevation myocardial
infarction from unstable angina were 51.5 and 57.3% (area under the
curve = 0.518), respectively. While in the second interval, the sensitivity
and specificity of this index were 17.7 and 87.8% (area under the
curve = 0.519), respectively. The creatine kinase-MB/creatine phosphokinase
delta in the non-ST elevation myocardial infarction group was significantly
higher than in patients with unstable angina during different time intervals
(p = 0.01). Conclusion: According to our results, creatine kinase-MB/creatine phosphokinase index
cannot help differentiate the two groups of non-ST elevation myocardial
infarction and unstable angina. However, the findings show that higher
levels of creatine kinase-MB enzyme and creatine kinase-MB/creatine
phosphokinase delta in the early hours, 4–16 h after the onset of pain in
non-ST elevation myocardial infarction patients, can be used to
differentiate between non-ST elevation myocardial infarction and unstable
angina.
Collapse
Affiliation(s)
- Hassan Motamed
- Department of Emergency Medicine,
Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,
Iran
| | - Mohammad Mohammadi
- Atherosclerosis Research Centre, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Tayebi
- Department of Emergency Medicine,
Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,
Iran
| | - Alireza Rafati Navaei
- Department of Emergency Medicine,
Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,
Iran
- Alireza Rafati Navaei, Department of
Emergency, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794,
Iran.
| |
Collapse
|
13
|
Abensur Vuillaume L, Frija-Masson J, Hadjiat M, Riquier T, d’Ortho MP, Le Borgne P, Goetz C, Voss PL, Ougazzaden A, Salvestrini JP, Leïchlé T. Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives. J Pers Med 2022; 12:1942. [PMID: 36556163 PMCID: PMC9781598 DOI: 10.3390/jpm12121942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
We have previously surveyed a panel of 508 physicians from around the world about which biomarkers would be relevant if obtained in a very short time frame, corresponding to emergency situations (life-threatening or not). The biomarkers that emerged from this study were markers of cardiovascular disease: troponin, D-dimers, and brain natriuretic peptide (BNP). Cardiovascular disease is a group of disorders affecting the heart and blood vessels. At the intersection of medicine, basic research and engineering, biosensors that address the need for rapid biological analysis could find a place of choice in the hospital or primary care ecosystem. Rapid, reliable, and inexpensive analysis with a multi-marker approach, including machine learning analysis for patient risk analysis, could meet the demand of medical teams. The objective of this opinion review, proposed by a multidisciplinary team of experts (physicians, biologists, market access experts, and engineers), is to present cases where a rapid biological response is indeed valuable, to provide a short overview of current biosensor technologies for cardiac biomarkers designed for a short result time, and to discuss existing market access issues.
Collapse
Affiliation(s)
- Laure Abensur Vuillaume
- Emergency Department CHR Metz-Thionville, 57000 Metz, France
- IRL 2958 Georgia Tech CNRS, 57000 Metz, France
| | - Justine Frija-Masson
- Digital Medical Hub, AP-HP, 75000 Paris, France
- Service de Physiologie Clinique-Explorations Fonctionnelles, Hôpital Bichat, AP-HP, F-75018 Paris, France
- UFR de Médecine, Université Paris Cité, NeuroDiderot, INSERM, F-75019 Paris, France
| | - Meriem Hadjiat
- Biology Department, CHR Metz-Thionville, 57000 Metz, France
| | | | - Marie-Pia d’Ortho
- Digital Medical Hub, AP-HP, 75000 Paris, France
- Service de Physiologie Clinique-Explorations Fonctionnelles, Hôpital Bichat, AP-HP, F-75018 Paris, France
- UFR de Médecine, Université Paris Cité, NeuroDiderot, INSERM, F-75019 Paris, France
| | - Pierrick Le Borgne
- Emergency Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), Fédération de Médecine Translationnelle (FMTS), University of Strasbourg, 67000 Strasbourg, France
| | - Christophe Goetz
- Clinical Research Support, CHR Metz-Thionville, 57000 Metz, France
| | - Paul L. Voss
- IRL 2958 Georgia Tech CNRS, 57000 Metz, France
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250, USA
| | - Abdallah Ougazzaden
- IRL 2958 Georgia Tech CNRS, 57000 Metz, France
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250, USA
| | - Jean-Paul Salvestrini
- IRL 2958 Georgia Tech CNRS, 57000 Metz, France
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250, USA
| | - Thierry Leïchlé
- IRL 2958 Georgia Tech CNRS, 57000 Metz, France
- LAAS-CNRS, 31400 Toulouse, France
| |
Collapse
|
14
|
Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. BIOSENSORS 2022; 12:bios12100783. [PMID: 36290921 PMCID: PMC9599711 DOI: 10.3390/bios12100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Two-dimensional (2D) layered materials functionalized with monometallic or bimetallic dopants are excellent materials to fabricate clinically useful biosensors. Herein, we report the synthesis of ruthenium nanoparticles (RuNPs) and nickel molybdate nanorods (NiMoO4 NRs) functionalized porous graphitic carbon nitrides (PCN) for the fabrication of sensitive and selective biosensors for cardiac troponin I (cTn-I). A wet chemical synthesis route was designed to synthesize PCN-RuNPs and PCN-NiMoO4 NRs. Morphological, elemental, spectroscopic, and electrochemical investigations confirmed the successful formation of these materials. PCN-RuNPs and PCN-NiMoO4 NRs interfaces showed significantly enhanced electrochemically active surface areas, abundant sites for immobilizing bioreceptors, porosity, and excellent aptamer capturing capacity. Both PCN-RuNPs and PCN-NiMoO4 NRs materials were used to develop cTn-I sensitive biosensors, which showed a working range of 0.1–10,000 ng/mL and LODs of 70.0 pg/mL and 50.0 pg/mL, respectively. In addition, the biosensors were highly selective and practically applicable. The functionalized 2D PCN materials are thus potential candidates to develop biosensors for detecting acute myocardial infractions.
Collapse
|
15
|
Multiplexed sensing techniques for cardiovascular disease biomarkers - A review. Biosens Bioelectron 2022; 216:114680. [DOI: 10.1016/j.bios.2022.114680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/02/2023]
|
16
|
Parent C, Laurent P, Goujon CE, Mermet X, Keiser A, Boizot F, Charles R, Audebert L, Fouillet Y, Cubizolles M. A versatile and automated microfluidic platform for a quantitative magnetic bead based protocol: application to gluten detection. LAB ON A CHIP 2022; 22:3147-3156. [PMID: 35678256 DOI: 10.1039/d2lc00328g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A microfluidic platform for the integration of multi-step biological assays has been developed. The presented system is a unique instrument compatible with microfluidic chips for various applications based on bead manipulation. Two examples of microfluidic cartridges are presented here. The first one contains two rows of eight chambers (40 and 80 μL), six reagent inlets, eight testing solution (calibrators and samples) inlets and eight outlets to reproduce precisely each step of a biological assay. This configuration is versatile enough to integrate many different biological assays and save a lot of development time. The second architecture is dedicated to one specific protocol and is completely automated from the standard and sample dilutions to the optical detection. Linear dilutions have been integrated to prepare automatically a range of standard concentrations and outlets have been modified for integrated colorimetric detection. The technology uses pneumatically collapsible chambers to perform all the fluidic operations for a fully automated protocol such as volume calibrations, fluid transport, mixing, and washing steps. A programmable instrument with a software interface has been developed to adapt rapidly a protocol to this cartridge. As an example, these new microfluidic cartridges have been used to successfully perform an immunoassay for gluten detection in the dynamic range of 10-30 ppm with good sensitivity (2 ppm) and specificity.
Collapse
Affiliation(s)
- Charlotte Parent
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Patricia Laurent
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | | | - Xavier Mermet
- CEA, LETI, Technologies for Healthcare and Biology Division, Univ. Grenoble Alpes, LSIV, F-38000 Grenoble, France
| | - Armelle Keiser
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - François Boizot
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Raymond Charles
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Lucas Audebert
- CEA, LETI, Technologies for Healthcare and Biology Division, Univ. Grenoble Alpes, LS2P, F-38000 Grenoble, France
| | - Yves Fouillet
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Myriam Cubizolles
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| |
Collapse
|
17
|
Liu X, Gan Y, Li F, Qiu Y, Pan Y, Wan H, Wang P. An Immunocolorimetric Sensing System for Highly Sensitive and High-Throughput Detection of BNP with Carbon-Gold Nanocomposites Amplification. BIOSENSORS 2022; 12:bios12080619. [PMID: 36005015 PMCID: PMC9405646 DOI: 10.3390/bios12080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Conventional immunocolorimetric sensing of biomolecules continues to be challenged with low sensitivity although its wide application as a diagnostic tool in medicine and biotechnology. Herein, we present a multifunctional immunocolorimetric sensing system for sensitive and high-throughput detection of B-type natriuretic peptide (BNP) with carbon-gold nanocomposite (CGNs) amplification. Using a “green” strategy, monodisperse carbon nanospheres (CNs) were successfully synthesized by glucose carbonization. A simple and efficient hydrothermal method was developed to assemble abundant gold nanoparticles (AuNPs) onto the surfaces of CNs. The resulting CGNs were characterized and utilized for biomarker detection with superior properties of easy manufacturing, good biocompatibility, satisfactory chemical stability, and high loading capacity for biomolecules. As a proof of concept, the as-prepared CGNs were conjugated with horseradish peroxidase-labeled antibody against BNP (CGNs@AntiBNP-HRP) functioning as the carrier, signal amplifier, and detector for the sensitive detection of BNP. Under optimal conditions, the established CGNs@AntiBNP-HRP immunoprobe remarkably enhanced the detection performance of BNP, achieving signal amplification of more than 9 times compared to the conventional method. Based on our self-developed bionic electronic eye (e-Eye) and CGNs@AntiBNP-HRP immunoprobe, the multifunctional sensing system displayed a wide dynamic linear range of 3.9–500 ng/mL and a LOD of 0.640 ng/mL for BNP detection with high specificity, good accuracy and reproducibility. This portable sensing system with enhanced performance demonstrates great potential for BNP detection in point of care applications, and offers a universal and reliable platform for in vitro biomarker detection.
Collapse
Affiliation(s)
- Xin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Centre, Zhejiang University, Hangzhou 310058, China
- Binjiang Institute, Zhejiang University, Hangzhou 310053, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Gan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Fengheng Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Pan
- Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 310027, China
- Correspondence: (Y.P.); (H.W.); (P.W.)
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Centre, Zhejiang University, Hangzhou 310058, China
- Binjiang Institute, Zhejiang University, Hangzhou 310053, China
- Correspondence: (Y.P.); (H.W.); (P.W.)
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Centre, Zhejiang University, Hangzhou 310058, China
- Binjiang Institute, Zhejiang University, Hangzhou 310053, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Y.P.); (H.W.); (P.W.)
| |
Collapse
|
18
|
John RV, Devasiya T, V.R. N, Adigal S, Lukose J, Kartha VB, Chidangil S. Cardiovascular biomarkers in body fluids: progress and prospects in optical sensors. Biophys Rev 2022; 14:1023-1050. [PMID: 35996626 PMCID: PMC9386656 DOI: 10.1007/s12551-022-00990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the major causative factors for high mortality and morbidity in developing and developed nations. The biomarker detection plays a crucial role in the early diagnosis of several non-infectious and life-threatening diseases like CVD and many cancers, which in turn will help in more successful therapy, reducing the mortality rate. Biomarkers have diagnostic, prognostic and therapeutic significances. The search for novel biomarkers using proteomics, bio-sensing, micro-fluidics, and spectroscopic techniques with good sensitivity and specificity for CVD is progressing rapidly at present, in addition to the use of gold standard biomarkers like troponin. This review is dealing with the current progress and prospects in biomarker research for the diagnosis of cardiovascular diseases. Expert opinion. Fast diagnosis of cardiovascular diseases (CVDs) can help to provide rapid medical intervention, which can affect the patient's short and long-term health. Identification and detection of proper biomarkers for early diagnosis are crucial for successful therapy and prognosis of CVDs. The present review discusses the analysis of clinical samples such as whole blood, blood serum, and other body fluids using techniques like high-performance liquid chromatography-LASER/LED-induced fluorescence, Raman spectroscopy, mainly, optical methods, combined with nanotechnology and micro-fluidic technologies, to probe patterns of multiple markers (marker signatures) as compared to conventional techniques.
Collapse
Affiliation(s)
- Reena V. John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Tom Devasiya
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Nidheesh V.R.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Sphurti Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - V. B. Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| |
Collapse
|
19
|
Goryacheva OA, Ponomaryova TD, Drozd DD, Kokorina AA, Rusanova TY, Mishra PK, Goryacheva IY. Heart failure biomarkers BNP and NT-proBNP detection using optical labels. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|