1
|
Yao M, Li A, Yang Y, Xu Z, Yuan M, Ouyang H, He M, Feng Y, Yang S, Li J. Comprehensive identification strategy for rapid profiling of chemical constituents using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry with Rhubarb as an example. J Chromatogr A 2024; 1730:465094. [PMID: 38889584 DOI: 10.1016/j.chroma.2024.465094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in rhubarb was wholly explored using 34 standards by UHPLC-QTOF-MS/MS in negative ion mode. In consequently, the diagnostic product ions for speedy screening and categorization of chemical components in rhubarb were ascertained based on their MS/MS splitting decomposition patterns and intensity analysis. According to these findings, a fresh two-step data mining strategy had set up. The initial key step involves the use of characteristic product ions and neutral loss to screen for different types of substituents and basic skeletons of compounds. The subsequent key step is to screen and classify different types of compounds based on their characteristic product ions. This method can be utilized for rapid research, classification, and identification of compounds in rhubarb. A total of 356 compounds were rapidly identified or tentatively characterized in three rhubarb species extracts, including 150 acylglucoside, 125 anthraquinone, 65 flavanols and 15 other compounds. This study manifests that the analytical strategy is feasible for the analysis of complex natural products in rhubarb.
Collapse
Affiliation(s)
- Min Yao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China; Jiangxi Institute for Drug Control, No.1566 Beijing East Road, Nanchang 330029, PR China; NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, No.1566 Beijing East Road, Nanchang 330029, PR China
| | - Ang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China
| | - Yisheng Yang
- Jiangxi Institute for Drug Control, No.1566 Beijing East Road, Nanchang 330029, PR China; NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, No.1566 Beijing East Road, Nanchang 330029, PR China
| | - Zhenquan Xu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China
| | - Mingming Yuan
- Jiangxi Institute for Drug Control, No.1566 Beijing East Road, Nanchang 330029, PR China; NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, No.1566 Beijing East Road, Nanchang 330029, PR China
| | - Hui Ouyang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China
| | - Mingzhen He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China.
| | - Junmao Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Road, Nanchang 330002, PR China.
| |
Collapse
|
2
|
Song L, Yang BQ, Xie WJ, Gao Y, Shan CX, Peng GP, Xie XY, Gao XL, Zheng YF. An efficient method for rapid screening of triterpenoid saponins in three Glycyrrhiza species using rapid resolution liquid chromatography quadrupole time-of-flight mass spectrometry combined with mass defect filtering. J Pharm Biomed Anal 2024; 246:116213. [PMID: 38754155 DOI: 10.1016/j.jpba.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Triterpenoid saponins, a major bioactive component of liquorice, possess high hydrophilicity and often co-occur with other impurities of similar polarity. Additionally, subtle structural differences of some triterpenoid saponins bring challenges to comprehensive characterisation. In this study, triterpenoid saponins of three Glycyrrhiza species were systematically analysed using rapid resolution liquid chromatography quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF-MS) coupled with mass defect filtering (MDF). Firstly, comprehensive date acquisition was achieved using RRLC-Q-TOF-MS. Secondly, a polygonal MDF method was established by summarizing known and speculated substituents and modifications based on the core structure to rapidly screen potential triterpenoid saponins. Thirdly, based on the fragmentation patterns of reference compounds, an identification strategy for characterisation of triterpenoid saponins was proposed. The strategy divided triterpenoid saponins into three distinct classes. By this strategy, 98 triterpenoid saponins including 10 potential new ones were tentatively characterised. Finally, triterpenoid saponins of three Glycyrrhiza species were further analysed using principle component analysis (PCA) and orthogonality partial least squares discriminant analysis (OPLS-DA). Among these, 18 compounds with variable importance in projections (VIP) > 1.0 and P values < 0.05 were selected to distinguish three Glycyrrhiza species. Overall, our study provided a reference for quality control and rational use of the three species.
Collapse
Affiliation(s)
- Li Song
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bao-Qing Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Jie Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Gao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen-Xiao Shan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guo-Ping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Xiang-Yun Xie
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830011, China
| | - Xiao-Li Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830011, China
| | - Yun-Feng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China.
| |
Collapse
|
3
|
Li Q, Bai J, Ma Y, Sun Y, Zhou W, Wang Z, Zhou Z, Wang Z, Chen Y, Abliz Z. Pharmacometabolomics and mass spectrometry imaging approach to reveal the neurochemical mechanisms of Polygala tenuifolia. J Pharm Anal 2024; 14:100973. [PMID: 39175609 PMCID: PMC11340588 DOI: 10.1016/j.jpha.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 08/24/2024] Open
Abstract
Polygala tenuifolia, commonly known as Yuanzhi (YZ) in Chinese, has been shown to possess anti-insomnia properties. However, the material basis and the mechanism underlying its sedative-hypnotic effects remain unclear. Herein, we investigated the active components and neurochemical mechanism of YZ extracts using liquid chromatography tandem mass spectrometry (LC-MS/MS)-based pharmacometabolomics and mass spectrometry imaging (MSI)-based spatial resolved metabolomics. According to the results, 17 prototypes out of 101 ingredients in the YZ extract were detected in both the plasma and brain, which might be the major components contributing to the sedative-hypnotic effects. Network pharmacology analysis revealed that these prototypes may exert their effects through neuroactive ligand-receptor interaction, serotonergic synapse, dopaminergic synapse, and dopaminergic synapse, among other pathways. LC-MS/MS-based targeted metabolomics and Western blot (WB) revealed that tryptophan-serotonin-melatonin (Trp-5-HT-Mel) and tyrosine-norepinephrine-adrenaline (Tyr-Ne-Ad) are the key regulated pathways. Dopa decarboxylase (DDC) upregulation and phenylethanolamine N-methyltransferase (PNMT) downregulation further confirmed these pathways. Furthermore, MSI-based spatially resolved metabolomics revealed notable alterations in 5-HT in the pineal gland (PG), and Ad in the brainstem, including the middle brain (MB), pons (PN), and hypothalamus (HY). In summary, this study illustrates the efficacy of an integrated multidimensional metabolomics approach in unraveling the sedative-hypnotic effects and neurochemical mechanisms of a Chinese herbal medicine, YZ.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jinpeng Bai
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuxue Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yu Sun
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Wenbin Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
4
|
Liu Y, Ma X, Mao F, Qiu J, Bi J, Li X, Gu X, Zheng Y, Zhao Y. HMGR and CHS gene cloning, characterizations and tissue-specific expressions in Polygala tenuifolia Willd. PLoS One 2024; 19:e0300895. [PMID: 38527035 PMCID: PMC10962832 DOI: 10.1371/journal.pone.0300895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Triterpenoid saponins and flavonoids have several pharmacological activities against P. tenuifolia. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and chalcone synthase (CHS) are the rate-limiting enzymes of triterpenoid saponin and flavonoid biosynthesis, respectively. In this study, HMGR and CHS genes were cloned from P. tenuifolia, and their bioinformatics analyses and tissue-specific expression were investigated. The results showed that the HMGR and CHS genes were successfully cloned, separately named the PtHMGR gene (NCBI accession: MK424118) and PtCHS gene (NCBI accession: MK424117). The PtHMGR gene is 2323 bp long, has an open reading frame (ORF) of 1782 bp, and encods 593 amino acids. The PtCHS gene is 1633 bp long with an ORF of 1170 bp, encoding 389 amino acids. PtHMGR and PtCHS were both hydrophobic, not signal peptides or secreted proteins, containing 10 conserved motifs. PtHMGR and PtCHS separately showed high homology with HMGR and CHS proteins from other species, and their secondary structures mainly included α-helix and random curl. The tertiary structure of PtHMGR was highly similarity to that the template 7ULI in RCSB PDB with 92.0% coverage rate. The HMG-CoA-binding domain of PtHMGR is located at 173-572 amino acid residues, including five bound sites. The tertiary structure of PtCHS showed high consistency with the template 1I86 in RCSB PDB with 100% coverage rate, contained malonyl CoA and 4-coumaroyl-CoA linkers. The expression of PtHMGR and PtCHS is tissue-specific. PtHMGR transcripts were mainly accumulated in roots, followed by leaves, and least in stems, and were significantly positively correlated with the contents of total saponin and tenuifolin. PtCHS was highly expressed in the stems, followed by the leaves, with low expression in the roots. PtCHS transcripts showed a significant positive correlation with total flavonoids content, however, they were significantly negatively correlated with the content of polygalaxanthone III (a type of flavonoids). This study provided insight for further revealing the roles of PtHMGR and PtCHS.
Collapse
Affiliation(s)
- Yang Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Xiaofang Ma
- Yinchuan Women and Children Health Care Hospital, Yinchuan, Ningxia, China
| | - Fuying Mao
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Jinmiao Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xiaowei Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, Hebei Province, China
| |
Collapse
|
5
|
Chen W, Zhao W, Wu L, Li J, Zhao H, Zhao Y, Song Y. Integrated post-acquisition data processing strategy for rapid steroid sulfate characterization in Toad gall-bladder. J Pharm Biomed Anal 2024; 240:115958. [PMID: 38198886 DOI: 10.1016/j.jpba.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
LC-MS serves as a workhorse for chemical profile characterization of Chinese medicinal materials (CMMs) attributing to the ability of measuring fruitful MS/MS spectral information. However, it is laborious to extract the information belonging to the compounds-of-interest from the massive data matrixes even employing those well-defined post-acquisition data processing strategies. Here, efforts were devoted to propose an integrated strategy allowing rapid chemical homologs-focused data filtering through integrating the fit-for-purpose existing strategies, such as molecular weight imprinting (MWI), diagnostic fragment ion filtering (DFIF), neutral loss filtering (NLF), and isotope pattern filtering (IPF). Homologs-focused chemical characterization of a precious CMM namely Toad gall-bladder (Chinese name: Chandan) that is rich of diverse effective steroid sulfates, particularly bufogenin sulfates, bile acid sulfates and bilichol sulfates, was employed as a proof-of-concept. Recombinant human SULT2A1-catalyzed in vitro metabolism was undertaken to generate eight bufogenin sulfates to facilitate summarizing MS/MS spectral behaviors. After in-house data library construction and MS1 and MS2 spectral acquisition, data filtering was conducted as follows: 1) MWI and IPF was utilized in combination to capture deprotonated molecular ions and the 34S isotopic ions for the sulfates of those reported steroids; 2) m/z 79.9568 (SO3-·) and 96.9596 (HSO4-) were applied to DFIF; and 3) SO3 (79.9568 Da) served as the feature to achieve NLF. Those captured MS/MS information subsequently participated in tentatively structural annotation through applying those empirical mass fragmentation rules. As a result, 71 compounds including 7 bufogenin sulfates, 17 bile acid sulfates, 13 bilichol sulfates and a C-23 steroid sulfate were detected from Toad gall-bladder and thereof, 39 ones received plausible identities assignment. Above all, the steroid sulfates in Toad gall-bladder were profiled in depth, and more importantly, the proposed strategy should be a meaningful option for, but not limited to, submetabolome characterization in CMMs.
Collapse
Affiliation(s)
- Wei Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhang M, Wang Q, Li X, Zhao W, Hu K, Huang Q, Song Y, Shao R. Integrated strategy facilitates rapid in-depth chemome characterization of traditional Chinese medicine prescriptions: Shengbai oral liquid as a case. J Sep Sci 2023; 46:e2300350. [PMID: 37525339 DOI: 10.1002/jssc.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Chemome characterization is the prerequisite for either therapeutic mechanism clarification or quality control of traditional Chinese medicine prescriptions (TCMPs). Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) currently serves as the most popular analytical tool; however, chemome characterization is still challenged by MS/MS spectral acquisition and post-acquisition data processing. Here, an integrated strategy was proposed for in-depth chemome clarification of Shengbai oral liquid (SBOL). Gas phase ion fractionation with staggered mass ranges was demonstrated to be the superior acquisition method regarding MS2 spectrum coverage in this study, and narrower mass range further advanced coverage. To facilitate information extraction, all ingredient materials were measured in parallel to form an in-house library, where each MS1 -MS2 item generated a square mass-to-charge ratio (m/z) frame to capture the tagged identity and each chemical family produced a pentagon frame for mass defect features to accomplish chemical analogs-targeted quasi-molecular ion extraction. Square m/z frame imprinting captured 355 identities, while mass defect frames extracted 275 compounds. Attributing to comprehensive MS2 spectrum acquisition and efficient data processing, 355 components were captured and tentatively identified, resulting in a clarified chemical composition for SBOL. Therefore, the proposed strategy should be meaningful for the chemome characterization of TCMPs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Qian Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyong Hu
- Hubei Mengyang Pharmaceutical Co., Ltd., Jingmen, China
| | - Qian Huang
- Hubei Mengyang Pharmaceutical Co., Ltd., Jingmen, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Shao
- Department of Pharmacy, Xinjiang Medical University, Urumqi, China
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Research Center of National Drug Policy and Ecosystem, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Wang Q, Liu W, Peng B, Gong X, Shi J, Zhang K, Li B, Tu P, Li J, Jiang J, Zhao Y, Song Y. Two-dimensional code enables visibly mapping herbal medicine chemome: an application in Ganoderma lucidum. Chin Med 2023; 18:6. [PMID: 36635742 PMCID: PMC9837956 DOI: 10.1186/s13020-022-00702-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chemical profile provides the pronounced evidence for herbal medicine (HM) authentication; however, the chemome is extremely sophisticated. Fortunately, two-dimensional (2D) code, as a quick response means, is conceptually able to store abundant information, exactly fulfilling the chemical information storage demands of HMs. METHODS We here attempted to denote both MS[Formula: see text] and MS[Formula: see text] dataset of HM with a single 2D-code chart. Measurement of Ganoderma lucidum that is one of the most famous HMs with LC-MS/MS was employed to illustrate the "coding-decoding" workflow for the conversion amongst MS/MS dataset, 2D-code, and chemical profile, and to evaluate the applicability as well. After data acquisition, and m/z value of each deprotonated molecular signal was divided into integer and decimal portions, corresponding to x and y coordinates of 2D-plot, respectively. On the other side, m/z values of all its fragment ions were exactly assigned to serial x values sharing an identical y value being equal to the precursor ion. 2D-code was thereafter produced by plotting these defined dots at a 2D-chart. Regarding a given 2D-code map, the entire chart (x coordinate: 0-600; y coordinate: 0-600) was fragmented into two regions by the line of y=x. MS[Formula: see text] spectral signals always located below the line, whereas all fragment ions lay at the left zone. After extracting information from the edges of each square frame, m/z values of both precursor ion and fragment ions could be harvested and putatively deciphered to a compound through applying some empirical mass fragmentation rules. RESULTS The entire code of Ganoderma lucidum fruit bodies therefore corresponded exactly to a compound set. The elution program, even the employment of direct infusion, couldn't significantly impact the code, and dramatical differences occurred between different species and amongst different parts of Ganoderma lucidum as well. Not only ganoderic acid cluster but also certain primary metabolites served as the diagnostic compounds towards species differentiation. CONCLUSION 2D-code might be a meaningful, practical visual way for rapid HM recognition because it is convenient to achieve the conversion amongst MS/MS dataset, 2D-barcode plot, and the chemome.
Collapse
Affiliation(s)
- Qian Wang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Peng
- Amway (China) Botanical Research Center, Wuxi, China
| | - Xingcheng Gong
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zhang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Pengfei Tu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Jiang
- grid.495496.3Shandong Institute for Food and Drug Control, Ji’nan, China
| | - Yunfang Zhao
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Song
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
A Comparative Study of Serum Pharmacochemistry of Kai-Xin-San in Normal and AD Rats Using UPLC-LTQ-Orbitrap-MS. Pharmaceuticals (Basel) 2022; 16:ph16010030. [PMID: 36678527 PMCID: PMC9866203 DOI: 10.3390/ph16010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Kai-Xin-San (KXS) is a classic formula for the treatment of Alzheimer's disease (AD). KXS has been widely used to treat emotional diseases; however, its active components remain unknown. There have been some reports about the efficacy and metabolic analysis of KXS, which are mainly based on studying normal animals. The current work first established an AD rat model by injecting D-galactose into the abdominal cavity and injecting Aβ25-35 into the hippocampus on both sides, followed by intragastric administration of KXS for a consecutive week; then, the analytical method for ethanol extraction from the serum of normal and model rats was developed using UPLC-LTQ-Orbitrap-MS; finally, the transitional components in the blood were systematically compared and analyzed by multivariate statistical analysis. A total of 36 components of KXS were identified in the rat serum of the normal group, including 24 prototype components (including ginsenosides, triterpenoid acids of Poria cocos, polygala saponins, polygala xanthones and polygala ester) and 13 metabolites (including desugar, hydration and oxidation products of ginsenosides, triterpenoid acid hydroxylation, deoxygenation, demethylation, desaturation, and glycine-conjugated products of Poria cocos). Twenty KXS-relevant components were detected in the rat serum of the model group, including 11 prototypes and 9 metabolites. The normal group and the model group shared 12 common components, including 9 prototypes and 3 metabolites. The intestinal microecological balance of the model rats probably was destroyed, affecting the absorption/metabolism of saponins by the body, which resulted in fewer transitional components in the model group. This study reflected the drug-body interaction from an objective and accurate perspective, offering references and insights for elucidating the basis of active components and mechanism of action of KXS for treating AD.
Collapse
|
10
|
Wang Z, Sun X, Zhao Y, Ga L, Li Q, Li Q, Wang X, Yang C. Qualitative and quantitative analysis of the bioactive components of "ginseng-polygala" drug pair against PC12 cell injury based on UHPLC-QTOF-MS and HPLC. Front Pharmacol 2022; 13:949757. [PMID: 36569314 PMCID: PMC9780267 DOI: 10.3389/fphar.2022.949757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Aβ25-35-induced PC12 cells were used as the in vitro injury model to evaluate the effects on PC12 cells after intervention with the "ginseng-polygala" drug pair. The results showed that the drug pair could significantly increase cell activity and reduce the level of reactive oxygen species and the concentration of inflammatory factors to improve the Alzheimer's disease treatment process. Furthermore, to rapidly identify and classify complicated bioactive components of the drug pair, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with a molecular network strategy was established. With this strategy, 40 constituents were preliminarily identified and a database of the compounds was successfully established. Among them, 12 compounds of different categories were accurately identified by comparison with reference substances. The content of the aforementioned active components was simultaneously determined by HPLC to control the quality of compatible medicinal materials, and the verification results of the analytical method met the content determination requirements. The results revealed that after compatibility, the content change of the components is not the simple addition of quantity but the comprehensive effect of the two medicines. In conclusion, this study could provide a generally applicable strategy for pharmacological activity, structural identification, and content determination in traditional Chinese medicine and its compatibility.
Collapse
|
11
|
Cao Y, Li W, Chen W, Niu X, Wu N, Wang Y, Li J, Tu P, Zheng J, Song Y. Squared Energy-Resolved Mass Spectrometry Advances Quantitative Bile Acid Submetabolome Characterization. Anal Chem 2022; 94:15395-15404. [DOI: 10.1021/acs.analchem.2c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yan Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wei Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wei Chen
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Xiaoya Niu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Nian Wu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| |
Collapse
|
12
|
Li H, Zhang K, Niu X, Wu N, Su X, Tu P, Zhao Y, Song Y. Full collision energy ramp-MS 2 spectral features of natural esters: Salvianolic acid A as a case. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9344. [PMID: 35737679 DOI: 10.1002/rcm.9344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Han Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoya Niu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Nian Wu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqin Su
- Tianjin Key Laboratory of Safety Evaluation Enterprise of Traditional Chinese Medicine Injections, Tianjin, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Jia J, Zhang K, Wang S, Yu J, Li J, Tu P, Song Y. Hybrid complex anions of ginsenosides resulted from direct infusion-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9319. [PMID: 35484762 DOI: 10.1002/rcm.9319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Jinru Jia
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shicong Wang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, China
| | - Juan Yu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Du Z, Huang D, Shi P, Dong Z, Wang X, Li M, Chen W, Zhang F, Sun L. Integrated Chemical Interpretation and Network Pharmacology Analysis to Reveal the Anti-Liver Fibrosis Effect of Penthorum chinense. Front Pharmacol 2022; 13:788388. [PMID: 35721129 PMCID: PMC9201443 DOI: 10.3389/fphar.2022.788388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound–target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.
Collapse
Affiliation(s)
- Zenan Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengjie Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiujuan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Mengshuang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
15
|
Liu W, Li W, Zhang P, Gong X, Tu P, Tang L, Li J, Song Y. Quality structural annotation for the metabolites of chlorogenic acid in rat. Food Chem 2022; 379:132134. [DOI: 10.1016/j.foodchem.2022.132134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
|
16
|
Liu W, Cao L, Jia J, Li H, Li W, Li J, Song Y. Rapid chemome profiling of Artemisia capillaris Thunb. using direct infusion-mass spectrometry. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|