1
|
Monier I, Ego A, Hocquette A, Benachi A, Goffinet F, Lelong N, Le Ray C, Zeitlin J. Validity of a Delphi consensus definition of growth restriction in the newborn for identifying neonatal morbidity. Am J Obstet Gynecol 2025; 232:224.e1-224.e13. [PMID: 38697341 DOI: 10.1016/j.ajog.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Small for gestational age is defined as a birthweight below a birthweight percentile threshold, usually the 10th percentile, with the third or fifth percentile used to identify severe small for gestational age. Small for gestational age is used as a proxy for growth restriction in the newborn, but small-for-gestational-age newborns can be physiologically small and healthy. In addition, this definition excludes growth-restricted newborns who have weights more than the 10th percentile. To address these limits, a Delphi study developed a new consensus definition of growth restriction in newborns on the basis of neonatal anthropometric and clinical parameters, but it has not been evaluated. OBJECTIVE To assess the prevalence of growth restriction in the newborn according to the Delphi consensus definition and to investigate associated morbidity risks compared with definitions of Small for gestational age using birthweight percentile thresholds. STUDY DESIGN Data come from the 2016 and 2021 French National Perinatal Surveys, which include all births ≥22 weeks and/or with birthweights ≥500 g in all maternity units in France over 1 week. Data are collected from medical records and interviews with mothers after the delivery. The study population included 23,897 liveborn singleton births. The Delphi consensus definition of growth restriction was birthweight less than third percentile or at least 3 of the following criteria: birthweight, head circumference or length <10th percentile, antenatal diagnosis of growth restriction, or maternal hypertension. A composite of neonatal morbidity at birth, defined as 5-minute Apgar score <7, cord arterial pH <7.10, resuscitation and/or neonatal admission, was compared using the Delphi definition and usual birthweight percentile thresholds for defining small for gestational age using the following birthweight percentile groups: less than a third, third to fourth, and fifth to ninth percentiles. Relative risks were adjusted for maternal characteristics (age, parity, body mass index, smoking, educational level, preexisting hypertension and diabetes, and study year) and then for the consensus definition and birthweight percentile groups. Multiple imputation by chained equations was used to impute missing data. Analyses were carried out in the overall sample and among term and preterm newborns separately. RESULTS We identified that 4.9% (95% confidence intervals, 4.6-5.2) of newborns had growth restriction. Of these infants, 29.7% experienced morbidity, yielding an adjusted relative risk of 2.5 (95% confidence intervals, 2.2-2.7) compared with newborns without growth restriction. Compared with birthweight ≥10th percentile, morbidity risks were higher for low birthweight percentiles (less than third percentile: adjusted relative risk, 3.3 [95% confidence intervals, 3.0-3.7]; third to fourth percentile: relative risk, 1.4 [95% confidence intervals, 1.1-1.7]; fifth to ninth percentile: relative risk, 1.4 [95% confidence intervals, 1.2-1.6]). In adjusted models including the definition of growth restriction and birthweight percentile groups and excluding birthweights less than third percentile, which are included in both definitions, morbidity risks remained higher for birthweights at the third to fourth percentile (adjusted relative risk, 1.4 [95% confidence intervals, 1.1-1.7]) and fifth to ninth percentile (adjusted relative risk, 1.4 [95% confidence intervals, 1.2-1.6]), but not for the Delphi definition of growth restriction (adjusted relative risk, 0.9 [95% confidence intervals, 0.7-1.2]). Similar patterns were found for term and preterm newborns. CONCLUSION The Delphi consensus definition of growth restriction did not identify more newborns with morbidity than definitions of small for gestational age on the basis of birthweight percentiles. These findings illustrate the importance of evaluating the results of Delphi consensus studies before their adoption in clinical practice.
Collapse
Affiliation(s)
- Isabelle Monier
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France.
| | - Anne Ego
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France; Public Health Department, CHU Grenoble Alpes, Université Grenoble Alpes, CNRS, Grenoble INP Institute of Engineering, TIMC-IMAG, Grenoble, France; INSERM CIC U1406, Grenoble, France
| | - Alice Hocquette
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France
| | - Alexandra Benachi
- Department of Obstetrics and Gynaecology, Antoine Béclère Hospital, AP-HP, University Paris Saclay, Clamart, France
| | - Francois Goffinet
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France; Maternité Port-Royal, AP-HP, APHP, Centre-Université de Paris, FHU PREMA, Paris, France
| | - Nathalie Lelong
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France
| | - Camille Le Ray
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France; Maternité Port-Royal, AP-HP, APHP, Centre-Université de Paris, FHU PREMA, Paris, France
| | - Jennifer Zeitlin
- Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé) Research Team, Université de Paris, Epidemiology and Statistics Research Center (CRESS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national de la recherche agronomique (INRA), Paris, France
| |
Collapse
|
2
|
Starodubtseva NL, Tokareva AO, Volochaeva MV, Kononikhin AS, Brzhozovskiy AG, Bugrova AE, Timofeeva AV, Kukaev EN, Tyutyunnik VL, Kan NE, Frankevich VE, Nikolaev EN, Sukhikh GT. Quantitative Proteomics of Maternal Blood Plasma in Isolated Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:16832. [PMID: 38069155 PMCID: PMC10706154 DOI: 10.3390/ijms242316832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.
Collapse
Affiliation(s)
- Natalia L. Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O. Tokareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Maria V. Volochaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexey S. Kononikhin
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexander G. Brzhozovskiy
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Anna E. Bugrova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Evgenii N. Kukaev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor L. Tyutyunnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Natalia E. Kan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N. Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| |
Collapse
|