1
|
Xu X, Liu Y, Lan M, Liu F, Xia H, Zeng J. Suppression of SRC protein kinase activity alleviates the severity of aganglionosis by impairing CAV1/FLNA expression. Sci Prog 2025; 108:368504251336287. [PMID: 40296549 DOI: 10.1177/00368504251336287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
ObjectiveHirschsprung's disease (HSCR) is a rare congenital disorder attributed to the defects of enteric neural crest cells. We aim to identify characteristic phosphorylation proteins and preliminarily explore underlying related action mechanisms in HSCR.MethodsColon samples from HSCR patients underwent proteomic and phosphoproteomic sequencing to identify differentially expressed phosphoproteins (DEPPs) and proteins (DEPs). Interaction network construction and analysis of correlations with upstream phosphorylating kinases were employed to pinpoint core proteins. HSCR rat models were established through enema administration of Benzalkonium chloride and evaluated by measuring colon cross-sectional area, colon weight, AchE, and PGP9.5 levels. Histopathological damage was assessed via hematoxylin and eosin staining. Protein expression was analyzed using western blotting. Furthermore, the impact of SRC kinase in HSCR was investigated utilizing an SRC-specific inhibitor in HSCR rat models.ResultsA total of 5725 DEPPs were identified, with SRC kinase emerging as a key regulatory protein. In the HSCR rat model, SRC expression was elevated along with increased pCAV1 and FLNA levels. Notably, inhibition of SRC protein kinase activity by 1-(tert-butyl)-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d] pyrimidin-4-amine (PP2) led to reduced colon cross-sectional area and weight, an increase in the number of colonic ganglion cells, heightened AchE levels, enhanced PGP9.5 expression, and slight enlargement of the crypt, thereby alleviating HSCR symptoms in rats. Additionally, SRC kinase inhibition following PP2 treatment decreased the expression of pCAV1 and FLNA.ConclusionsInhibition of SRC kinase activity may potentially reduce CAV1/FLNA expression, ultimately alleviating the severity of HSCR in rats.
Collapse
Affiliation(s)
- Xiaogang Xu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Menglong Lan
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Fei Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Zhang F, Cui M, Zhang L, Ma B, Guo F, Wang G. GFRA4 improves the neurogenic potential of enteric neural crest stem cells via hedgehog pathway. Pediatr Res 2024:10.1038/s41390-024-03158-8. [PMID: 38658664 DOI: 10.1038/s41390-024-03158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital intestinal disease characterised by functional obstruction of the colon. Herein, we investigated the role and mechanism of the gene GFRA4 in HSCR. METHODS GFRA4 expression in the ganglionic and aganglionic segment tissues in patients with HSCR and healthy colon tissues were detected using qRT-PCR, western blot, and immunohistochemistry. Cell proliferation, cycle distribution, apoptosis, changes in mitochondrial membrane potential, and differentiation were assessed in mouse enteric neural crest stem cells (ENCSCs) using the CCK-8 assay, EdU staining, flow cytometry, JC-1 probe, and immunofluorescence, respectively. GSEA analysis was performed to screen the signaling pathways regulated by GFRA4. RESULTS GFRA4 was downregulated in aganglionic segment tissues compared to control and ganglionic segment tissues. GFRA4 overexpression promoted proliferation and differentiation, and inhibited apoptosis in ENCSCs, while GFRA4 down-regulation had the opposite result. GFRA4 activated the hedgehog pathway. GFRA4 overexpression enhanced the expression of key factors of the hedgehog pathway, including SMO, SHH, and GLI1. However, GFRA4 down-regulation reduced their expression. An antagonist of hedgehog pathway, cyclopamine, attenuated the effect of GFRA4 overexpression on proliferation, differentiation, and apoptosis of ENCSCs. CONCLUSION GFRA4 promotes proliferation and differentiation but inhibits apoptosis of ENCSCs via the hedgehog pathway in HSCR. IMPACT This study confirms that GFRA4 improves the proliferation and differentiation of ENCSCs via modulation of the hedgehog pathway. This study for the first time revealed the role and the mechanism of the action of GFRA4 in HSCR, which indicates that GFRA4 may play a role in the pathological development of HSCR. Our findings may lay the foundation for further investigation of the mechanisms underlying HSCR development and into targets of HSCR treatment.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bangzhen Ma
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Hong M, Li X, Li Y, Zhou Y, Li Y, Chi S, Cao G, Li S, Tang S. Hirschsprung's disease: key microRNAs and target genes. Pediatr Res 2022; 92:737-747. [PMID: 34880446 DOI: 10.1038/s41390-021-01872-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aimed to identify key microRNAs (miRNAs), pathways, and target genes mediating Hirschsprung's disease (HSCR) pathogenesis and identify the diagnostic potential of miRNAs. METHODS The Gene Expression Omnibus database and reverse transcription-quantitative PCR were used to compare miRNA expression between ganglionic and aganglionic colon tissues of children with HSCR, and the TAM 2.0 database was used to identify colon tissue-specific miRNAs. The StarBase database, TargetScan database, luciferase reporter, and western blot assays were used to analyze miRNA-messenger RNA interactions. OmicShare was used to perform functional and pathway enrichment analyses of the target genes. Migration assays were performed to validate the functions of the miRNAs. RESULTS The TAM 2.0 database analysis and reverse transcription-quantitative PCR showed that hsa-miR-192-5p, hsa-miR-200a-3p, and hsa-miR-200b-3p were colon tissue-specific and upregulated in aganglionic colon tissue compared to paired ganglionic colon tissue. These three miRNAs effectively reduced cell viability and migration. Luciferase reporter and western blot assays verified the direct interaction between these three miRNAs and the target genes of ZEB2 and FNDC3B. Furthermore, the plasma levels of these miRNAs were higher in HSCR patients than in non-HSCR patients. CONCLUSIONS Three plasma miRNAs (hsa-miR-192-5p, hsa-miR-200a-3p, and hsa-miR-200b-3p) are potential peripheral HSCR biomarkers. IMPACT The molecular mechanisms underlying HSCR are unclear. HSCR is most accurately diagnosed using rectal biopsy samples, and no consensus has been reached on the use of blood-based tests for HSCR diagnosis. Circulating miRNAs may be candidate diagnostic HSCR biomarkers because they are typically easily detectable, stable, and tissue-specific. Three plasma miRNAs (miR-200a-3p, miR-192-5p, and miR-200b-3p) are potential peripheral HSCR biomarkers.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqing Chi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|