1
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
3
|
Zhang F, Cui M, Zhang L, Ma B, Guo F, Wang G. GFRA4 improves the neurogenic potential of enteric neural crest stem cells via hedgehog pathway. Pediatr Res 2024:10.1038/s41390-024-03158-8. [PMID: 38658664 DOI: 10.1038/s41390-024-03158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital intestinal disease characterised by functional obstruction of the colon. Herein, we investigated the role and mechanism of the gene GFRA4 in HSCR. METHODS GFRA4 expression in the ganglionic and aganglionic segment tissues in patients with HSCR and healthy colon tissues were detected using qRT-PCR, western blot, and immunohistochemistry. Cell proliferation, cycle distribution, apoptosis, changes in mitochondrial membrane potential, and differentiation were assessed in mouse enteric neural crest stem cells (ENCSCs) using the CCK-8 assay, EdU staining, flow cytometry, JC-1 probe, and immunofluorescence, respectively. GSEA analysis was performed to screen the signaling pathways regulated by GFRA4. RESULTS GFRA4 was downregulated in aganglionic segment tissues compared to control and ganglionic segment tissues. GFRA4 overexpression promoted proliferation and differentiation, and inhibited apoptosis in ENCSCs, while GFRA4 down-regulation had the opposite result. GFRA4 activated the hedgehog pathway. GFRA4 overexpression enhanced the expression of key factors of the hedgehog pathway, including SMO, SHH, and GLI1. However, GFRA4 down-regulation reduced their expression. An antagonist of hedgehog pathway, cyclopamine, attenuated the effect of GFRA4 overexpression on proliferation, differentiation, and apoptosis of ENCSCs. CONCLUSION GFRA4 promotes proliferation and differentiation but inhibits apoptosis of ENCSCs via the hedgehog pathway in HSCR. IMPACT This study confirms that GFRA4 improves the proliferation and differentiation of ENCSCs via modulation of the hedgehog pathway. This study for the first time revealed the role and the mechanism of the action of GFRA4 in HSCR, which indicates that GFRA4 may play a role in the pathological development of HSCR. Our findings may lay the foundation for further investigation of the mechanisms underlying HSCR development and into targets of HSCR treatment.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bangzhen Ma
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
5
|
Hotta R, Pan W, Bhave S, Nagy N, Stavely R, Ohkura T, Krishnan K, de Couto G, Myers R, Rodriguez-Borlado L, Burns AJ, Goldstein AM. Isolation, Expansion, and Endoscopic Delivery of Autologous Enteric Neuronal Stem Cells in Swine. Cell Transplant 2023; 32:9636897231215233. [PMID: 38049927 PMCID: PMC10697035 DOI: 10.1177/09636897231215233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
The enteric nervous system (ENS) is an extensive network of neurons and glia within the wall of the gastrointestinal (GI) tract that regulates many essential GI functions. Consequently, disorders of the ENS due to developmental defects, inflammation, infection, or age-associated neurodegeneration lead to serious neurointestinal diseases. Despite the prevalence and severity of these diseases, effective treatments are lacking as they fail to directly address the underlying pathology. Neuronal stem cell therapy represents a promising approach to treating diseases of the ENS by replacing the absent or injured neurons, and an autologous source of stem cells would be optimal by obviating the need for immunosuppression. We utilized the swine model to address key questions concerning cell isolation, delivery, engraftment, and fate in a large animal relevant to human therapy. We successfully isolated neural stem cells from a segment of small intestine resected from 1-month-old swine. Enteric neuronal stem cells (ENSCs) were expanded as neurospheres that grew optimally in low-oxygen (5%) culture conditions. Enteric neuronal stem cells were labeled by lentiviral green fluorescent protein (GFP) transduction, then transplanted into the same swine from which they had been harvested. Endoscopic ultrasound was then utilized to deliver the ENSCs (10,000-30,000 neurospheres per animal) into the rectal wall. At 10 and 28 days following injection, autologously derived ENSCs were found to have engrafted within rectal wall, with neuroglial differentiation and no evidence of ectopic spreading. These findings strongly support the feasibility of autologous cell isolation and delivery using a clinically useful and minimally invasive technique, bringing us closer to first-in-human ENSC therapy for neurointestinal diseases.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kumar Krishnan
- Division of Gastroenterology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey de Couto
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Luis Rodriguez-Borlado
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Alan J. Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
7
|
Self-expanding intestinal expansion sleeves (IES) for short gut syndrome. Pediatr Surg Int 2022; 38:75-81. [PMID: 34709433 DOI: 10.1007/s00383-021-05024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Many disease processes (necrotizing enterocolitis, caustic esophageal injury, malrotation with volvulus), can result in short-gut syndrome (SGS), where remnant intestinal segments may dilate axially, but rarely elongate longitudinally. Here we mechanically characterize a novel model of a self-expanding mesh prototype intestinal expanding sleeve (IES) for use in SGS. METHODS Gut lengthening was achieved using a proprietary cylindrical layered polyethylene terephthalate IES device with helicoid trusses with isometric ends. The IES is pre-contracted by diametric expansion, deployed into the gut and anchored with bioabsorbable sutures. IES expansion to its equilibrium dimension maintained longitudinal gut tension, which may permit remodeling, increased absorptive surface area while preserving vascular and nervous supplies. We performed mechanical testing to obtain the effective force-displacement characterization achieved on these prototypes and evaluated minimal numbers of sutures needed for its anchoring. Furthermore, we deployed these devices in small and large intestines of New Zealand White rabbits, measured IES length-tension relationships and measured post-implant gut expansion ex vivo. Histology of the gut before and after implantation was also evaluated. RESULTS Longitudinal tension using IES did not result in suture failure. Maximum IES suture mechanical loading was tested using 4-6 sutures; we found similar failure loads of 2.95 ± 0.64, 4 ± 1.9 and 3.16 ± 0.24 Newtons for 4, 6 and 8 sutures, respectively (n = 3, n.s). Pre-contracted IES tubes were deployed at 67 ± 4% of initial length (i.l.); in the large bowel these expanded significantly to 81.5 ± 3.7% of i.l. (p = 0.014, n = 4). In the small bowel, pre-contracted IES were 61 ± 3.8% of i.l.; these expanded significantly to 82.7 ± 7.4% of i.l. (p = 0.0009, n = 6). This resulted in an immediate 24 ± 7.8% and 36.2 ± 11% increase in gut length when deployed in large and small bowels, respectively, with maintained longitudinal tension. Maintained IES induced tension produced gut wall thinning; gut histopathological evaluation is currently under evaluation. CONCLUSION IES is a versatile platform for gaining length in SGS, which may be simply deployed via feeding tubes. Our results need further validation for biocompatibility and mechanical characterization to optimize use in gut expansion.
Collapse
|
8
|
Thomas AL, Taylor JS, Dunn JCY. Human skin-derived precursor cells xenografted in aganglionic bowel. J Pediatr Surg 2020; 55:2791-2796. [PMID: 32253016 DOI: 10.1016/j.jpedsurg.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE One in 5000 newborns is diagnosed with Hirschsprung disease each year in the United States. The potential of employing neural crest stem cells to restore the enteric nervous system has been investigated. Skin-derived precursor cells (SKPs) are multipotent progenitor cells that can differentiate into neurons and gliocytes in vitro and generate enteric ganglion-like structures in rodents. Here we examined the behavior of human SKPs (hSKPs) after their transplantation into a large animal model of colonic aganglionosis. METHODS Juvenile minipigs underwent a chemical denervation of the colon to establish an aganglionosis model. The hSKPs were generated from human foreskin and were cultured in neuroglial-selective medium. Cells were labeled with a fluorescent dye and were injected into the porcine aganglionic colon. After one week, transplanted hSKPs were assessed by immunofluorescence for markers of multipotency and neuroglial differentiation. RESULTS In culture, hSKPs expressed nestin and S100b indicative of neuroglial precursors. After xenografting in pigs, hSKPs were identified in the myenteric and submucosal plexuses of the colons. The hSKPs expressed nestin and early neuroglial differentiation markers. CONCLUSIONS Human SKPs transplanted into aganglionic colon demonstrated immunophenotypes of neuroglial progenitors, suggesting their potential use for Hirschsprung disease.
Collapse
Affiliation(s)
- Anne-Laure Thomas
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305
| | - Jordan S Taylor
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305.
| |
Collapse
|