1
|
Su Z, Xing Y, Xiao Y, Guo J, Wang C, Wang F, Xu Z, Wu W, Gu Y. Decellularized, Heparinized Small-Caliber Tissue-Engineered "Biological Tubes" for Allograft Vascular Grafts. ACS Biomater Sci Eng 2024; 10:5154-5167. [PMID: 39079153 DOI: 10.1021/acsbiomaterials.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
There remains a lack of small-caliber tissue-engineered blood vessels (TEBVs) with wide clinical use. Biotubes were developed by electrospinning and in-body tissue architecture (iBTA) technology to prepare small-caliber TEBVs with promising applications. Different ratios of hybrid fibers of poly(l-lactic-co-ε-caprolactone) (PLCL) and polyurethane (PU) were obtained by electrospinning, and the electrospun tubes were then implanted subcutaneously in the abdominal area of a rabbit (as an in vivo bioreactor). The biotubes were harvested after 4 weeks. They were then decellularized and cross-linked with heparin. PLCL/PU electrospun vascular tubes, decellularized biotubes (D-biotubes), and heparinized combined decellularized biotubes (H + D-biotubes) underwent carotid artery allograft transplantation in a rabbit model. Vascular ultrasound follow-up and histological observation revealed that the biotubes developed based on electrospinning and iBTA technology, after decellularization and heparinization cross-linking, showed a better patency rate, adequate mechanical properties, and remodeling ability in the rabbit model. IBTA technology caused a higher patency, and the heparinization cross-linking process gave the biotubes stronger mechanical properties.
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100086 Beijing, China
| | - Julong Guo
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Cong Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Fei Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Zeqin Xu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Weiwei Wu
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| |
Collapse
|
2
|
Adly HA, El-Okby AWY, Yehya AA, El-Shamy AA, Galhom RA, Hashem MA, Ahmed MF. Circumferential Esophageal Reconstruction Using a Tissue-engineered Decellularized Tunica Vaginalis Graft in a Rabbit Model. J Pediatr Surg 2024; 59:1486-1497. [PMID: 38692944 DOI: 10.1016/j.jpedsurg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Pediatric surgeons have faced esophageal reconstruction challenges for decades owing to a variety of congenital and acquired conditions. This work aimed to introduce a reproducible and efficient approach for creating tissue-engineered esophageal tissue using bone marrow mesenchymal stem cells (BMSCs) cultured in preconditioned mediums seeded on a sheep decellularized tunica vaginalis (DTV) scaffold for partial reconstruction of a rabbit's esophagus. METHODS DTV was performed using SDS and Triton X-100 solutions. The decellularized grafts were employed alone (DTV group) or after recellularization with BMSCs cultured for 10 days in preconditioned mediums (RTV group) for reconstructing a 3 cm segmental defect in the cervical esophagus of rabbits (n = 20) after the decellularization process was confirmed. Rabbits were observed for one month, after which they were euthanized, and the reconstructed esophagi were harvested for histological analysis. RESULTS Six rabbits in the DTV group and eight rabbits in the RTV group survived until the end of the one-month study period. Despite histological examination demonstrating that both grafts completely repaired the esophageal defect, the RTV graft demonstrated a histological structure similar to that of the normal esophagus. The reconstructed esophagi in the RTV group revealed the arrangement of the different layers of the esophageal wall with the formation of newly formed blood vessels and Schwann-like cells. CONCLUSION DTV xenograft is a novel scaffold that promotes cell adhesion and differentiation and might be effectively utilized for regenerating esophageal tissue, paving the way for future clinical trials in pediatric patients.
Collapse
Affiliation(s)
- Hassan A Adly
- Pediatric Surgery Unit, General Surgery Department, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt.
| | - Abdel-Wahab Y El-Okby
- Department of Pediatric Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Abdel-Aziz Yehya
- Department of Pediatric Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed A El-Shamy
- Pediatric Surgery Unit, General Surgery Department, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Rania A Galhom
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Tissue Culture Lab, Center of Excellence of Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mohamed A Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud F Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Yamamoto S, Matsui K, Kinoshita Y, Hiroshi Sasaki, Sekine H, Saito Y, Nakayama Y, Kume H, Kimura T, Yokoo T, Kobayashi E. Successful reconstruction of the rat ureter by a syngeneic collagen tube with a cardiomyocyte sheet. Regen Ther 2023; 24:561-567. [PMID: 37868722 PMCID: PMC10584669 DOI: 10.1016/j.reth.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Ureteral injuries require surgical intervention as they lead to loss of renal function. The current reconstructive techniques for long ureteral defects are problematic. Consequently, this study aimed to reconstruct the ureter in a rat model using subcutaneously prepared autologous collagen tubes (Biotubes). Methods The lower ureter of LEW/SsNSlc rats was ligated to dilate the ureter to make anastomosis easier, and reconstruction was performed six days later by anastomosing the dilated ureter and bladder with a Biotube that was prepared subcutaneously in syngeneic rats. Some rats underwent left nephrectomy and ureter reconstruction simultaneously as negative controls to evaluate the effects of urine flow on patency. The other rats were divided into three groups as follows: a group in which the ureter was reconstructed with the Biotube alone, a group in which cardiomyocyte sheets made from the neonatal hearts of syngeneic rats were wrapped around the Biotube, and a group in which an adipose-derived stem cell sheets made from the inguinal fat of adult syngeneic rats were wrapped. Contrast-enhanced computed tomography and pathological evaluations were performed two weeks after reconstruction. Result In the Biotube alone group, all tubes were occluded and hydronephrosis developed, whereas the urothelium regenerated beyond the anastomosis when the left kidney was not removed, suggesting that urothelial epithelial spread occurred with urinary flow. The patency of the ureteral lumen was obtained in some rats in the cardiomyocyte sheet covered group, whereas stricture or obstruction of the reconstructed ureter was observed in all rats in the other groups. Pathological evaluation revealed a layered urothelial structure in the cardiomyocyte sheet covered group, although only a small amount of cardiomyocyte sheets remained. Conclusion Urinary flow may support the epithelial spread of the urothelium into the reconstructed ureter. Neonatal rat cardiomyocyte sheets supported the patency of the regenerated ureter with a layered urothelium.
Collapse
Affiliation(s)
- Shutaro Yamamoto
- Department of Urology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshitaka Kinoshita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroshi Sasaki
- Department of Urology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
4
|
Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting. Heliyon 2022; 8:e09312. [PMID: 35615432 PMCID: PMC9124710 DOI: 10.1016/j.heliyon.2022.e09312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
|