1
|
Wang X, Xu Y, Yu H, Lu Y, Qian Y, Wang M. Metabolomics and Lipidomics Reveal the Metabolic Disorders Induced by Single and Combined Exposure of Fusarium Mycotoxins in IEC-6 Cells. Foods 2025; 14:230. [PMID: 39856896 PMCID: PMC11765315 DOI: 10.3390/foods14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Deoxynivalenol (DON), fumonisin B1 (FB1), and zearalenone (ZEN) are typical fusarium mycotoxins that occur worldwide in foodstuffs, posing significant health hazards to humans and animals. Single and combined exposure of DON, FB1, and ZEN leads to intestinal toxicity but the toxicology mechanism research is still limited. In this study, we explored the cytotoxicity effects of DON, FB1, ZEN, and their combination in rat intestinal epithelial cell line 6 (IEC-6) cells. Cell viability results showed that the cytotoxicity potency ranking was DON > ZEN > FB1. Furthermore, both DON + FB1 and DON + ZEN presented synergism to antagonism effects based on a combination index (CI)-isobologram equation model. Integrated metabolomics and lipidomics was adopted to explore cell metabolism disorders induced by fusarium mycotoxin exposure. A total of 2011 metabolites and 670 lipids were identified. An overlap of 37 and 62 differential compounds was confirmed after single and combined mycotoxin exposure by multivariate analysis, respectively. Some of the differential compounds were endocellular antioxidants and were significantly downregulated in mycotoxin exposure groups, indicating metabolic disorders as well as antioxidant capacity damage in cells. Pathway enrichment analysis annotated ethanol metabolism production of ROS by CYP2E1 was mainly involved in the disturbance of DON, FB1, and ZEN. The results obtained in this study help to define the toxicity effects of DON, FB1, and ZEN singly and in co-existence, providing an important scientific basis for combined risk recognition of mycotoxin contamination.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.W.); (H.Y.)
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (Y.X.); (Y.L.)
| | - Haiqi Yu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.W.); (H.Y.)
| | - Yushun Lu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (Y.X.); (Y.L.)
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (Y.X.); (Y.L.)
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.W.); (H.Y.)
| |
Collapse
|
2
|
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer 2025; 24:5. [PMID: 39780248 PMCID: PMC11707952 DOI: 10.1186/s12943-024-02208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy. Myeloid-derived suppressor cells (MDSCs), due to their potent immunosuppressive capabilities, emerged as major negative regulators within the TME, facilitating tumor immune evasion by modulating various immune cells. In addition to their immunosuppressive functions, MDSCs also promote tumor growth and metastasis through non-immunological mechanisms, such as angiogenesis and the formation of pre-metastatic niches. Consequently, MDSCs in the TME are key regulators of cancer immune responses and potential therapeutic targets in cancer treatment. This review describes the origins and phenotypes of MDSCs, their biological roles in tumor progression, and regulatory mechanisms, with a focus on current therapeutic approaches targeting tumor-associated MDSCs. Furthermore, the synergistic effects of targeting MDSCs in combination with immunotherapy are explored, aiming to provide new insights and directions for cancer therapy.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|