1
|
Dycha N, Michalak-Tomczyk M, Jachuła J, Okoń E, Jarząb A, Tokarczyk J, Koch W, Gaweł-Bęben K, Kukula-Koch W, Wawruszak A. Chemopreventive and Anticancer Activity of Selected Triterpenoids in Melanoma. Cancers (Basel) 2025; 17:1625. [PMID: 40427124 PMCID: PMC12109728 DOI: 10.3390/cancers17101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., cell viability and proliferation inhibition, apoptosis induction, cell cycle regulation, and immune system modulation. The review evaluates the current state of the art on the chemopreventive and anticancer activity of lupane- (betulinic acid), oleanane- (oleanolic acid, β-amyrin, escin, hederagenin, glycyrrhetinic acid), and ursane-type (ursolic acid, asiatic acid, madecassic acid, α-amyrin) triterpenoids in melanoma, highlighting their mechanisms of action, therapeutic potential, and challenges in clinical application.
Collapse
Affiliation(s)
- Natalia Dycha
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (N.D.); (W.K.-K.)
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Joanna Tokarczyk
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.T.); (W.K.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.T.); (W.K.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (N.D.); (W.K.-K.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
2
|
Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, Egbung GE, Aja PM. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnology 2025; 23:336. [PMID: 40336110 PMCID: PMC12057057 DOI: 10.1186/s12951-025-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-generation obesity management strategies.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M Aja
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
3
|
Guo Z, Li P, Huang C, Niu T, Wang Z, Lai G, Ding L, Yang L, Wang Z, Pu Z, Wang R. Functional characterization and protein engineering of glycosyltransferase for 2"-O-xylosylation of ginsenoside Rg3. Int J Biol Macromol 2025; 308:142539. [PMID: 40147665 DOI: 10.1016/j.ijbiomac.2025.142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The limited abundance of xylosylated ginsenosides and the lack of efficient biocatalysts hinder their pharmacological exploration. This study identified a 2"-O-xylosyltransferase (PnUGT57) from Panax notoginseng that catalyzes the conversion of ginsenoside Rg3 to notoginsenoside ST4. Wild-type PnUGT57 preferred UDP-xylose over UDP-glucose and UDP-rhamnose and displayed limited thermostability (t1/2 = 6.73 h at 30 °C). To enhance UDP-xylose specificity, sequence-guided mutagenesis generated the C140A variant, which achieved remarkable UDP-xylose specificity (100 % conversion) with a 1.34-fold increase in catalytic efficiency while showing weak activity toward UDP-glucose (8.7 %) and UDP-rhamnose (5.2 %) activity. The F367A mutant possesses only xylosyltransferase activity but with reduced catalytic efficiency (0.3-fold of the WT). Molecular docking revealed that the enhanced UDP-xylose specificity in C140A and F367A resulted from the loss of key hydrogen bonding and hydrophobic interactions. To improve thermostability, computational design produced a triple mutant (P101S/L200C/G255D) with an 8.58-fold longer half-life (57.76 h), attributed to optimized surface charge distribution and improved hydration layer formation, as confirmed by molecular dynamics simulation. The combinatorial mutant C140A/P101S/L200C/G255D synergistically improved UDP-xylose specificity, thermostability, and catalytic efficiency, enabling efficient ST4 biosynthesis. This study elucidates the catalytic mechanism of PnUGT57 and presents engineered variants as promising biocatalysts for sustainable ginsenoside production.
Collapse
Affiliation(s)
- Zhihan Guo
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengfei Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chaokang Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziyan Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanxue Lai
- Hefei MiQro Era Digital Technology Co. Ltd., Hefei, China
| | - Lili Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongji Pu
- Xianghu laboratory, Hangzhou 311231, China.
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Szymańska A, Nowak A, Lipert A, Kochan E. Effect of Ginseng Supplementation on Exercise Endurance as a Support for Cardiovascular Disease Management: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 14:32. [PMID: 39857366 PMCID: PMC11761553 DOI: 10.3390/antiox14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Ginseng has multi-directional pharmacological properties. Some data suggest that ginseng can enhance physical endurance, which, in turn, leads to protection of the cardiovascular system. However, not all experiments are conclusive. For this reason, the main aim of this research was to perform a meta-analysis and review of studies published between the years 2013 and 2023 concerning the ginseng effect on physical performance in animal and human models. Medline, Pubmed, and ClinicalKey electronic databases were used to analyze data. The search strategy included the following criteria: ginseng and exercise; ginseng supplementation; and ginseng supplements. The results suggest that ginseng supplementation may have a positive effect on CK levels in animal studies. Similar observations were stated in relation to serum lactate and BUN. Furthermore, a human study showed a significant increase in exercise time to exhaustion and VO2 max after supplementation. The review of the literature and conducted meta-analysis identified that ginseng supplementation may have a positive effect on exercise endurance. Due to the fact that most of the current studies were based on animal models, further research on human models is needed to identify the most effective dosage or form of applied ginseng to be a supportive element in CVD management.
Collapse
Affiliation(s)
- Angelika Szymańska
- Department of Pharmacological Biotechnology, Medical University of Lodz, 90-152 Lodz, Poland
| | - Anna Nowak
- Department of Preventive Medicine, Medical University of Lodz, 92-213 Lodz, Poland; (A.N.); (A.L.)
| | - Anna Lipert
- Department of Preventive Medicine, Medical University of Lodz, 92-213 Lodz, Poland; (A.N.); (A.L.)
| | - Ewa Kochan
- Department of Pharmacological Biotechnology, Medical University of Lodz, 90-152 Lodz, Poland
| |
Collapse
|
5
|
Wang H, Hong L, Yang F, Zhao Y, Jing Q, Wang W, Zhang M, Yang Y, Chen Q, Hu Y, Zou Y, Li X, Yang W. Desorption Electrospray Ionization-Mass Spectrometry Imaging-Based Spatial Metabolomics for Visualizing and Comparing Ginsenosides and Lipids among Multiple Parts and Positions of the Panax ginseng Root. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27549-27560. [PMID: 39620636 DOI: 10.1021/acs.jafc.4c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Ginsenosides and lipids are both bioactive ingredients for ginseng. Targeting these two categories of components, this study was designed to develop desorption electrospray ionization-mass spectrometry imaging approaches and spatial metabolomics strategies, achieving the visualization and differentiation among different parts of Panax ginseng root (e.g., rhizome, main root, lateral root, fibrous root, and adventitious root). Potential chemical markers were identified by searching an in-house ginsenoside library and online Lipid Maps database, together with high-resolution MS2 data analysis. Six ginsenosides and 11 lipids were diagnostic to differentiate five different parts of the P. ginseng root. Additionally, three ginsenosides and 20 lipids were identified as differential markers among the six positions of the main root of P. ginseng. High-abundance malonyl- and oleanolic acid-ginsenosides were observed in the rhizome. These results assist in understanding the accumulation of bioactive molecules all through the root of P. ginseng, which can benefit its quality control and rational use.
Collapse
Affiliation(s)
- Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lili Hong
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Feifei Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wei Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
6
|
Wang S, Zou Y, Zhang M, Xu X, Wang H, Jiang M, Hu Y, Cheng H, Li X, Guo D, Yang W. Online Comprehensive Two-Dimensional Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolic Profiling and Comparison Enabling the Characterization of 1146 Ginsenosides and More Explicit Differentiation of Ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24866-24878. [PMID: 39439127 DOI: 10.1021/acs.jafc.4c06793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work was designed for the in-depth characterization and holistic comparison of up to 12 ginseng varieties, which can benefit the development of functional foods and ensure their authenticity in the food industry. An online comprehensive two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry (2D-LC/QTOF-MS) approach was established by configurating the XCharge C18 and HSS Cyano columns. Under the optimal conditions, we characterized a total of 1146 ginsenosides (including 876 potentially new compounds) from 12 ginseng varieties by reference to an in-house library of 573 known ginsenosides and 70 reference compounds. The online 2D-LC/QTOF-MS-based untargeted metabolomics workflows were developed, by which 126 potential ginsenoside markers were unveiled and utilized to establish the key identification points for each ginseng species. Compared with the conventional liquid chromatography/mass spectrometry metabolomics, our multidimensional chromatography approach performed better in discriminating multiple ginseng varieties. This work demonstrates a potent and practical methodology to identify easily confused functional plants.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Huizhen Cheng
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
7
|
Ji H, Guo L, Yu D, Du X. Application of microorganisms in Panax ginseng: cultivation of plants, and biotransformation and bioactivity of key component ginsenosides. Arch Microbiol 2024; 206:433. [PMID: 39412649 DOI: 10.1007/s00203-024-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/10/2024]
Abstract
Panax ginseng is a precious Chinese medicinal plant with a long growth cycle and high medicinal value. Therefore, it is of great significance to explore effective ways to increase its yield and main active substance content to reduce the cost of ginseng, which is widely used in food and clinical applications. Here, we review the key roles of microorganisms in the biological control of ginseng diseases, enhancement of ginseng yield, biotransformation of ginsenosides, and augmentation of ginsenoside bioactivity. The application of microorganisms in P. ginseng faces multiple challenges, including the need for further exploration of efficient microbial strain resources used in the cultivation of ginseng and biotransformation of ginsenosides, lack of microbial application in large-scale field cultivation of ginseng, and unclear mechanism of microbial transformation of ginsenosides. This review provides a deeper understanding of the applications of microorganisms in P. ginseng.
Collapse
Affiliation(s)
- Hongyu Ji
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Lidong Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Dan Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiaowei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|