1
|
Scanavachi G, Yoneda JS, Sebinelli HG, Barbosa LRS, Ciancaglini P, Itri R. Photobiomodulation of Na,K-ATPase in native membrane fraction and reconstituted in DPPC:DPPE-liposome. Photochem Photobiol 2025; 101:230-238. [PMID: 38922888 DOI: 10.1111/php.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Studies focusing on how photobiomodulation (PBM) can affect the structure and function of proteins are scarce in the literature. Few previous studies have shown that the enzymatic activity of Na,K-ATPAse (NKA) can be photo-modulated. However, the variability of sample preparation and light irradiation wavelengths have not allowed for an unequivocal conclusion about the PBM of NKA. Here, we investigate minimal membrane models containing NKA, namely, native membrane fraction and DPPC:DPPE proteoliposome upon laser irradiation at wavelengths 532, 650, and 780 nm. Interestingly, we show that the PBM on the NKA enzymatic activity has a bell-shaped profile with a stimulation peak (~15% increase) at around 20 J.cm-2 and 6 J.cm-2 for the membrane-bound and the proteoliposome samples, respectively, and are practically wavelength independent. Further, by normalizing the enzymatic activity by the NKA enzyme concentration, we show that the PBM response is related to the protein amount with small influence due to protein's environment. The stimulation decays over time reaching the basal level around 6 h after the irradiation for the three lasers and both NKA samples. Our results demonstrate the potential of using low-level laser therapy to modulate NKA activity, which may have therapeutic implications and benefits.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Heitor G Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
| |
Collapse
|
2
|
Abstract
Low-level laser therapy (LLLT) has become an important part of the therapeutic process in various diseases. However, despite the broad use of LLLT in everyday clinical practice, the full impact of LLLT on cell life processes has not been fully understood. This paper presents the current state of knowledge concerning the mechanisms of action of LLLT on cells. A better understanding of the molecular processes occurring within the cell after laser irradiation may result in introducing numerous novel clinical applications of LLLT and potentially increases the safety profile of this therapy.
Collapse
|
3
|
The Comparison of the Efficacy of Blue Light-Emitting Diode Light and 980-nm Low-Level Laser Light on Bone Regeneration. J Craniofac Surg 2016; 27:2185-2189. [DOI: 10.1097/scs.0000000000003068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
4
|
Effect of LED photobiomodulation on fluorescent light induced changes in cellular ATPases and Cytochrome c oxidase activity in Wistar rat. Lasers Med Sci 2016; 31:1803-1809. [PMID: 27562504 DOI: 10.1007/s10103-016-2054-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fluorescent light exposure at night alters cellular enzyme activities resulting in health defects. Studies have demonstrated that light emitting diode photobiomodulation enhances cellular enzyme activities. OBJECTIVE The objectives of this study are to evaluate the effects of fluorescent light induced changes in cellular enzymes and to assess the protective role of pre exposure to 670 nm LED in rat model. METHODS Male Wistar albino rats were divided into 10 groups of 6 animals each based on duration of exposure (1, 15, and 30 days) and exposure regimen (cage control, exposure to fluorescent light [1800 lx], LED preexposure followed by fluorescent light exposure and only LED exposure). Na+-K+ ATPase, Ca2+ ATPase, and cytochrome c oxidase of the brain, heart, kidney, liver, and skeletal muscle were assayed. RESULTS Animals of the fluorescent light exposure group showed a significant reduction in Na+-K+ ATPase and Ca2+ ATPase activities in 1 and 15 days and their increase in animals of 30-day group in most of the regions studied. Cytochrome c oxidase showed increase in their level at all the time points assessed in most of the tissues. LED light preexposure showed a significant enhancement in the degree of increase in the enzyme activities in almost all the tissues and at all the time points assessed. CONCLUSIONS This study demonstrates the protective effect of 670 nm LED pre exposure on cellular enzymes against fluorescent light induced change.
Collapse
|
5
|
Anwer AG, Gosnell ME, Perinchery SM, Inglis DW, Goldys EM. Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence. Lasers Surg Med 2012; 44:769-78. [PMID: 23047589 DOI: 10.1002/lsm.22083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE The photobiological effect of laser light on cells and tissues originates from light absorption by endogenous chromophores and hence it depends on the wavelength of light source and cell type. Earlier studies regarding the biostimulation effects of green laser light investigated a wide variety of cells but not adipose tissue-derived stem cells (ADSCS). In this study we reported the in vitro effect of 532-nm Nd:YAG laser on proliferation, mitochondrial activity of these mesenchymal stem cells (MSCs) on the autofluorescence emission at wavelengths associated with nicotinamide adenine dinucleotide (NADH) and flavoproteins. MATERIALS AND METHODS ADSCS were exposed to 532 nm second harmonic generation laser light at moderate power density (0.153 W/cm(2)) for periods of 30, 45, 60, 180, and 300 seconds. Mitochondrial membrane potential was measured using JC1 stain and confocal laser scanning microscopy, cell proliferation rates, and cellular autofluorescence emission at 450 and 540 nm wavelengths were measured using micro plate spectrofluorometer 48 hours after irradiation. RESULTS Shorter (30-60 seconds) exposure times led to significantly increased proliferation, attributed to increased mitochondrial activity (P < 0.05). At longer exposures we observed a significant decrease in proliferation and autofluorescence (P < 0.05). Strong correlation was observed between proliferation rates of cells and autofluorescence intensity. CONCLUSION Our results show that autofluorescence of the respiratory chain components and key autofluorescent metabolites offers a non-invasive method to quantify cellular response to laser irradiation.
Collapse
Affiliation(s)
- Ayad G Anwer
- Ewa M Goldys MQ BioFocus Research Centre, Macquarie University, North Ryde, 2109 NSW, Australia
| | | | | | | | | |
Collapse
|
6
|
de Souza Merli LA, de Medeiros VP, Toma L, Reginato RD, Katchburian E, Nader HB, Faloppa F. The Low Level Laser Therapy Effect on the Remodeling of Bone Extracellular Matrix. Photochem Photobiol 2012; 88:1293-301. [DOI: 10.1111/j.1751-1097.2012.01172.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ciancaglini P, Simão AMS, Bolean M, Millán JL, Rigos CF, Yoneda JS, Colhone MC, Stabeli RG. Proteoliposomes in nanobiotechnology. Biophys Rev 2012; 4:67-81. [PMID: 28510001 PMCID: PMC5418368 DOI: 10.1007/s12551-011-0065-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/22/2011] [Indexed: 01/08/2023] Open
Abstract
Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.
Collapse
Affiliation(s)
- P Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil.
| | - A M S Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J L Millán
- Sanford Children's Health Research Center, Sanford - Burnham Medical Research Institute, La Jolla, CA, USA
| | - C F Rigos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J S Yoneda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M C Colhone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - R G Stabeli
- Centro de Estudos de Biomoléculas Aplicadas a Medicina, Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), 76800-000, Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz (Fiocruz-Rondonia), Ministério da Saúde, 76812-245, Porto Velho, RO, Brazil
| |
Collapse
|
8
|
Zancanela DC, Primo FL, Rosa AL, Ciancaglini P, Tedesco AC. The effect of photosensitizer drugs and light stimulation on osteoblast growth. Photomed Laser Surg 2011; 29:699-705. [PMID: 21668374 DOI: 10.1089/pho.2010.2929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE A promising new treatment in dentistry involves the photodynamic process, which utilizes a combination of two therapeutic agents, namely a photosensitizer drug and a low dose of visible light. We investigated the in vitro effect of low intensity laser irradiation (visible light irradiation at 670 nm) using doses ranging between 0.5 and 3 J/cm(2), combined with nanoemulsion (NE) of the photosensitizer drug aluminum phthalocyanine chloride (AlClPc), ranging from 0.5 to 5 μmol/L, on the growth and differentiation of osteoblastic cells isolated from rat bone marrow. BACKGROUND DATA Treatments using laser radiation of low intensity in dentistry are of great interest, especially in bucco-maxillofacial surgery and dental implantology, where this approach is currently employed to stimulate osteogenesis. In the presence of oxygen, the combination of these agents could induce cellular biostimulation, via an efficient noninvasive method. METHODS We have done the colorimetric MTT assay, collagen content, total protein content, ALP activity and bone-like nodule formation. RESULTS We observed that an increased number of viable cells was evident upon application of a laser dosage equal to 0.5 J/cm(2) when combined with 0.5 μmol/L of AlClPc/NE, suggesting cellular biostimulation. CONCLUSIONS It was possible to demonstrate that low intensity laser irradiation can play an important role in promoting biostimulation of osteoblast cell cultures. Therefore, whether biostimulation of osteoblastic cell cultures by photodynamic therapy or the cytotoxic effect of this therapy occurs only depends upon the light dose, and the results can be completely reversed.
Collapse
Affiliation(s)
- Daniela Cervelle Zancanela
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
9
|
Zhang H, Zhang L, Tidemand-Lichtenberg P, Buchhave P, Xu X, Li Y. Effect of Laser and LED on Enzymatic Production of Ceramide. Photochem Photobiol 2010; 87:131-6. [DOI: 10.1111/j.1751-1097.2010.00820.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mackanos MA, Larabi M, Shinde R, Simanovskii DM, Guccione S, Contag CH. Laser-induced disruption of systemically administered liposomes for targeted drug delivery. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:044009. [PMID: 19725721 DOI: 10.1117/1.3174410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 degrees C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.
Collapse
Affiliation(s)
- Mark A Mackanos
- Stanford Medical Center, Department of Pediatrics, E-150 Clark Center, 318 Campus Drive, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|