1
|
Cay SB, Cinar YU, Kuralay SC, Inal B, Zararsiz G, Ciftci A, Mollman R, Obut O, Eldem V, Bakir Y, Erol O. Genome skimming approach reveals the gene arrangements in the chloroplast genomes of the highly endangered Crocus L. species: Crocus istanbulensis (B.Mathew) Rukšāns. PLoS One 2022; 17:e0269747. [PMID: 35704623 PMCID: PMC9200356 DOI: 10.1371/journal.pone.0269747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Crocus istanbulensis (B.Mathew) Rukšāns is one of the most endangered Crocus species in the world and has an extremely limited distribution range in Istanbul. Our recent field work indicates that no more than one hundred individuals remain in the wild. In the present study, we used genome skimming to determine the complete chloroplast (cp) genome sequences of six C. istanbulensis individuals collected from the locus classicus. The cp genome of C. istanbulensis has 151,199 base pairs (bp), with a large single-copy (LSC) (81,197 bp), small single copy (SSC) (17,524 bp) and two inverted repeat (IR) regions of 26,236 bp each. The cp genome contains 132 genes, of which 86 are protein-coding (PCGs), 8 are rRNA and 38 are tRNA genes. Most of the repeats are found in intergenic spacers of Crocus species. Mononucleotide repeats were most abundant, accounting for over 80% of total repeats. The cp genome contained four palindrome repeats and one forward repeat. Comparative analyses among other Iridaceae species identified one inversion in the terminal positions of LSC region and three different gene (psbA, rps3 and rpl22) arrangements in C. istanbulensis that were not reported previously. To measure selective pressure in the exons of chloroplast coding sequences, we performed a sequence analysis of plastome-encoded genes. A total of seven genes (accD, rpoC2, psbK, rps12, ccsA, clpP and ycf2) were detected under positive selection in the cp genome. Alignment-free sequence comparison showed an extremely low sequence diversity across naturally occurring C. istanbulensis specimens. All six sequenced individuals shared the same cp haplotype. In summary, this study will aid further research on the molecular evolution and development of ex situ conservation strategies of C. istanbulensis.
Collapse
Affiliation(s)
- Selahattin Baris Cay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Yusuf Ulas Cinar
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Selim Can Kuralay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Siirt, Siirt, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Almila Ciftci
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Rachel Mollman
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Onur Obut
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
- * E-mail:
| | - Yakup Bakir
- Department of Plant Bioactive Metabolites, ACTV Biotechnology, Inc., Istanbul, Turkey
| | - Osman Erol
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Munawar K, Mansoor MA, McKee V, Zaharinie T, Mohd Zubir MN, Aspanut Z, Yusof FB, Mazhar M. Optical and photocatalytic properties of biomimetic cauliflowered Ca2Mn3O8–CaO composite thin films. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Recent Advances of First d-Block Metal-Based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts 2020. [DOI: 10.3390/catal10070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
First d-block metal-based perovskite oxides (FDMPOs) have garnered significant attention in research for their utilization in the water oxidation reaction due to their low cost, earth abundance, and promising activities. Recently, FDMPOs are being applied in electrocatalysis for the hydrogen evolution reaction (HER) and overall water splitting reaction. Numerous promising FDMPO-based water splitting electrocatalysts have been reported, along with new catalytic mechanisms. Therefore, an in-time summary of the current progress of FDMPO-based water splitting electrocatalysts is now considered imperative. However, few reviews have focused on this particular subject thus far. In this contribution, we review the most recent advances (mainly within the years 2014–2020) of FDMPO electrocatalysts for alkaline water splitting, which is widely considered to be the most promising next-generation technology for future large-scale hydrogen production. This review begins with an introduction describing the fundamentals of alkaline water electrolysis and perovskite oxides. We then carefully elaborate on the various design strategies used for the preparation of FDMPO electrocatalysts applied in the alkaline water splitting reaction, including defecting engineering, strain tuning, nanostructuring, and hybridization. Finally, we discuss the current advances of various FDMPO-based water splitting electrocatalysts, including those based on Co, Ni, Fe, Mn, and other first d-block metal-based catalysts. By conveying various methods, developments, perspectives, and challenges, this review will contribute toward the understanding and development of FDMPO electrocatalysts for alkaline water splitting.
Collapse
|
5
|
Gholamrezaei S, Amiri M, Amiri O, Salavati-Niasari M, Moayedi H. Ultrasound-accelerated synthesis of uniform SrMnO 3 nanoparticles as water-oxidizing catalysts for water splitting systems. ULTRASONICS SONOCHEMISTRY 2020; 62:104899. [PMID: 31810875 DOI: 10.1016/j.ultsonch.2019.104899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
One of the major issue in the 21st century is the humans request to green energy. The best form of green, sustainable and safe energy is hydrogen source due to its ecological and economical aspects. Herein, In order to obtain a highly water-oxidizing catalysts for water splitting systems, the sonochemical procedure applied for fabrication of practical SrMnO3 nanoparticles. Also, the influence of various green capping agents (fruit juices and vegetable wastes) was studied on the formation of uniform particles. In the present work ultrasonic probe with 60 W/cm2 intensity and 18 kHz frequency was used for sample synthesis. Further, catalytic behavior of these nanomaterials investigated in water splitting reaction for O2 evolution by modifying the operational variables. The best catalytic behavior observed by those nanoparticles that indicated the smallest size and the most uniform morphology (Max amount of TON = 7.556). By utilizing the ultrasonic irradiation, the catalytic behavior of SrMnO3 nanoparticles improved (TON (ultrasonic bath) = 8.430, TON (ultrasonic probe) = 11.315). Therefore, nano-SrMnO3 was introduced as an efficient and novel nanocatalyst for O2 evolution reaction.
Collapse
Affiliation(s)
- Sousan Gholamrezaei
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran
| | - Mahnaz Amiri
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Science, Kerman, Iran
| | - Omid Amiri
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran.
| | - Hossein Moayedi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
6
|
Gholamrezaei S, Ghanbari M, Amiri O, Salavati-Niasari M, Foong LK. BaMnO 3 nanostructures: Simple ultrasonic fabrication and novel catalytic agent toward oxygen evolution of water splitting reaction. ULTRASONICS SONOCHEMISTRY 2020; 61:104829. [PMID: 31669839 DOI: 10.1016/j.ultsonch.2019.104829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In the current paper, the main aim is to fabricate the BaMnO3 nanostructures via the sonochemical route. The various factor, including precursors, reaction time and power of sonication can affect the shape, size, and purity of the samples. We utilized X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray energy dispersive spectroscopy (EDS) to characterize the BaMnO3 nanostructures. The optical property of BaMnO3 nanostructures was explored by Ultraviolet-visible spectroscopy (UV-vis) and the energy gap was suitable for catalytic activity (about 2.75 eV). Changing the precursor can affect the size, nanoparticle shape, architectures, and uniformity of the samples. We employed the BaMnO3 nanostructures for O2 evolution reaction as catalysts. It can observe that increasing the homogeneity of the catalysts can increase the efficiency of the Oxygen evolution reaction. The maximum amount of the O2 evolution and the highest TOF and TON are related to nanoplate disc using barium salicylate as a precursor of barium. As a result, we can nominate the BaMnO3 nanostructures as an effective and novel catalyst for water-splitting reaction.
Collapse
Affiliation(s)
- Sousan Gholamrezaei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Omid Amiri
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran.
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
7
|
Gagrani A, Alsultan M, Swiegers GF, Tsuzuki T. Comparative evaluation of the structural and other features governing photo-electrochemical oxygen evolution by Ca/Mn oxides. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00105h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-inspired calcium manganate ceramics induce higher photocurrents than MnO2 in photo-electrochemical water splitting.
Collapse
Affiliation(s)
- Ankita Gagrani
- Research School of Electrical, Energy and Materials Engineering
- The Australian National University
- Canberra
- Australia
| | - Mohammed Alsultan
- Intelligent Polymer Research Institute
- University of Wollongong
- Wollongong
- Australia
- Department of Science
| | - Gerhard F. Swiegers
- Intelligent Polymer Research Institute
- University of Wollongong
- Wollongong
- Australia
| | - Takuya Tsuzuki
- Research School of Electrical, Energy and Materials Engineering
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
8
|
Hu Y, Xing W, Song H, Zhu H, Liu G, Hu Z. Evolutionary Analysis of Unicellular Species in Chlamydomonadales Through Chloroplast Genome Comparison With the Colonial Volvocine Algae. Front Microbiol 2019; 10:1351. [PMID: 31275275 PMCID: PMC6591512 DOI: 10.3389/fmicb.2019.01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
This study is the first determination of six chloroplast genomes of colonial volvocine algae, Colemanosphaera charkowiensis, Volvulina compacta, Pandorina colemaniae, Pandorina morum, Colemanosphaera angeleri, and Yamagishiella unicocca. Based on 55 chloroplast protein-coding genes, we compared the nonsynonymous (dN) and synonymous (dS) substitution rates between colonial volvocine algae and the other unicellular Chlamydomonadales species. When refer to the dN, we found 27 genes were significantly different, among them, 19 genes were significant higher in unicellular species (FDR-adjusted P < 0.05). When refer to the dS, we found 10 genes were significantly different, among them, 6 genes were significant higher in unicellular species (FDR-adjusted P < 0.05). Then we identified 14 putative fast-evolving genes and 11 putative positively selected genes of unicellular species, we analyzed the function of positively selected sites of the overlap genes of putative fast-evolving and positively selected genes, and found some sites were close to the important functional region of the proteins. Photosynthesis is the process to transform and store solar energy by chloroplast, it plays a vital role in the survival of algae, this study is the first to use the chloroplast genomes to analysis the evolutionary relationship between colonial and unicellular species in Chlamydomonadales. We found more genes have higher substitution rates in unicellular species and proposed that the fast-evolving and positively selected two genes, psbA and psbC, may help to improve the photosynthetic efficiency of unicellular species in Chlamydomonadales.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiyue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiyin Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhengyu Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Photo-Electrochemical Oxygen Evolution Reaction by Biomimetic CaMn2O4 Catalyst. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium manganese oxide catalysts are a new class of redox catalysts with significant importance because of their structural similarity to natural oxygen-evolving complex in plant cells and the earth-abundant elemental constituents. In the present study, the photo-electrocatalytic properties of CaMn2O4 in water-splitting were investigated. CaMn2O4 powders with irregular shapes and nanowire shapes were synthesised using mechanochemical processing and a hydrothermal method, respectively. The anode in a photo-electrochemical cell was fabricated by embedding CaMn2O4 powders within polypyrrole. The results showed that CaMn2O4 induced a higher dark and light current in comparison to the control sample (polypyrrole alone). CaMn2O4 nanowires exhibited higher dark and light current in comparison to irregular-shaped CaMn2O4 powders. The difference was attributable to the higher surface area of nanowires compared to the irregular-shaped particles, rather than the difference in exposed crystal facets.
Collapse
|
10
|
|
11
|
Gholamrezaei S, Salavati-Niasari M. Sonochemical synthesis of SrMnO 3 nanoparticles as an efficient and new catalyst for O 2 evolution from water splitting reaction. ULTRASONICS SONOCHEMISTRY 2018; 40:651-663. [PMID: 28946470 DOI: 10.1016/j.ultsonch.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The principal focus of this investigation is to prepare the SrMnO3 nanostructures by different chemical methods such as ultrasonic, co-precipitation, microwave, and hydrothermal methods. The influence of calcination temperature, and ultrasound irradiation power, and the presence of surfactant investigated on morphology and size of SrMnO3 nanostructures. As-prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray energy dispersive spectroscopy (EDS) and ultraviolet-visible (UV-Vis) spectroscopy. The results indicated that by changing in method and reaction condition, product appeared in different size, morphology, and uniformity. The morphology and size of nanostructures have been influenced on the properties of nano-SrMnO3. For investigation of properties, the SrMnO3 was used in catalytic water splitting for O2 evolution in presence of (NH4)2Ce(NO3)6. The effect of nano-catalysts and the concentration of (NH4)2Ce(NO3)6 have been studied on O2 evolution reaction. Results show that the efficiency of water splitting increased by enhancement in the size and uniformity of catalysts and introduced the SrMnO3 as a new and efficient catalyst for O2 evolution reaction.
Collapse
Affiliation(s)
- Sousan Gholamrezaei
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
12
|
Najafpour MM, Madadkhani S, Akbarian S, Zand Z, Hołyńska M, Kompany-Zareh M, Tatsuya T, Singh JP, Chae KH, Allakhverdiev SI. Links between peptides and Mn oxide: nano-sized manganese oxide embedded in a peptide matrix. NEW J CHEM 2018. [DOI: 10.1039/c8nj02119h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a poly-peptide/Mn oxide nanocomposite as a model for the water-oxidizing catalyst in Photosystem II.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Somayyeh Akbarian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Marburg D-35032
- Germany
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Tomo Tatsuya
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
13
|
Najafpour MM. From manganese complexes to nano-sized manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: Insights from the Zanjan team. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Najafpour MM, Heidari S, Balaghi SE, Hołyńska M, Sadr MH, Soltani B, Khatamian M, Larkum AW, Allakhverdiev SI. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:156-174. [DOI: 10.1016/j.bbabio.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|
15
|
Najafpour MM, Salimi S, Zand Z, Hołyńska M, Tomo T, Singh JP, Chae KH, Allakhverdiev SI. Nanosized manganese oxide/holmium oxide: a new composite for water oxidation. NEW J CHEM 2017. [DOI: 10.1039/c7nj02747h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ho2O3 as a support for nanosized Mn oxide was used for the synthesis of a new water-oxidizing catalyst.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Saeideh Salimi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Hans-Meerwein-Straße
- D-35032 Marburg
- Germany
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Kagurazaka 1-3
- Tokyo
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Botanicheskaya Street 35
- Moscow 127276
| |
Collapse
|
16
|
Najafpour MM, Moghaddam NJ, Hosseini SM, Madadkhani S, Hołyńska M, Mehrabani S, Bagheri R, Song Z. Nanolayered manganese oxides: insights from inorganic electrochemistry. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00215g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemistry of nanolayered Mn oxides in the presence of LiClO4 at pH = 6.3 under different conditions was studied.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Navid Jameei Moghaddam
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | | | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Somayeh Mehrabani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
17
|
Najafpour MM, Madadkhani S, Akbarian S, Hołyńska M, Kompany-Zareh M, Tomo T, Singh JP, Chae KH, Allakhverdiev SI. A new strategy to make an artificial enzyme: photosystem II around nanosized manganese oxide. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01654a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new strategy to make an artificial enzyme was reported.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Somayyeh Akbarian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
18
|
González-González J, Nájera-Lara M, López-Ramírez V, Ramírez-Vázquez JA, Segoviano-Garfias JJ. Spectrophotometric determination of the formation constants of calcium(II) complexes with 2,2'-bipyridyl and 1,10-phenanthroline in acetonitrile. RESOURCE-EFFICIENT TECHNOLOGIES 2016. [DOI: 10.1016/j.reffit.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'. Q Rev Biophys 2016; 49:e14. [PMID: 27659174 DOI: 10.1017/s0033583516000093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally inorganic precursor for the evolution of the photosynthetic oxygen-evolving complex. In summary, the overall structure of the catalytic site has given a framework on which to build a mechanistic scheme for photosynthetic dioxygen generation and at the same time provide a blue-print and incentive to develop catalysts for artificial photo-electrochemical systems to split water and generate renewable solar fuels.
Collapse
|
20
|
Najafpour MM, Hosseini SM, Zand Z. Manganese oxide supported on gold/iron as a water-oxidizing catalyst in artificial photosynthetic systems. Dalton Trans 2016; 45:9201-8. [DOI: 10.1039/c6dt01093h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new conductive, recyclable, highly dispersible, magnetically separable, environmentally friendly, and nano-sized catalyst for water oxidation is reported.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | | | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
21
|
Indra A, Menezes PW, Schuster F, Driess M. Significant role of Mn(III) sites in eg1 configuration in manganese oxide catalysts for efficient artificial water oxidation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:156-61. [DOI: 10.1016/j.jphotobiol.2014.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/31/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
|
22
|
Complex formation equilibria of 2,2′-bipyridyl and 1,10-phenanthroline with manganese(II) in methanol. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2015. [DOI: 10.1016/j.kijoms.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Nanolayered manganese oxide/C(60) composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 2015; 43:12058-64. [PMID: 24984108 DOI: 10.1039/c4dt00599f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For the first time, we considered Mn oxide/C60 composites as water-oxidizing catalysts. The composites were synthesized by easy and simple procedures, and characterized by some methods. The water-oxidizing activities of these composites were also measured in the presence of cerium(iv) ammonium nitrate. We found that the nanolayered Mn oxide/C60 composites show promising activity toward water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
24
|
Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K. The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Trans 2015; 43:13122-35. [PMID: 25046248 DOI: 10.1039/c4dt01367k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eighteen Mn complexes with N-donor and carboxylate ligands have been synthesized and characterized. Three Mn complexes among them are new and are reported for the first time. The reactions of oxygen evolution in the presence of oxone (2KHSO5·KHSO4·K2SO4) and cerium(iv) ammonium nitrate catalyzed by these complexes are studied and characterized by UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy, membrane-inlet mass spectrometry and electrochemistry. Some of these complexes evolve oxygen in the presence of oxone as a primary oxidant. CO2 and MnO4(-) are other products of these reactions. Based on spectroscopic studies, the true catalysts for oxygen evolution in these reactions are different. We proposed that for the oxygen evolution reactions in the presence of oxone, the true catalysts are both high valent Mn complexes and Mn oxides, but for the reactions in the presence of cerium(iv) ammonium nitrate, the active catalyst is most probably a Mn oxide.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Hołyńska M, Tomo T, Allakhverdiev SI. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 2015; 43:10866-76. [PMID: 24898625 DOI: 10.1039/c4dt01295j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | | | | | | | |
Collapse
|
26
|
Najafpour MM, Hosseini SM, Hołyńska M, Tomo T, Allakhverdiev SI. Gold nanorods or nanoparticles deposited on layered manganese oxide: new findings. NEW J CHEM 2015. [DOI: 10.1039/c5nj01392e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our results show that nano-sized gold has no significant effect on the water-oxidation activity of the Mn oxide phase in the presence of Ce(iv).
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | | | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
27
|
Najafpour MM, Amini E. Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(iv) ammonium nitrate: support from natural sources. Dalton Trans 2015; 44:15441-9. [DOI: 10.1039/c5dt02336j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used halloysite, a nano-sized natural mineral and high surface area montmorillonite as supports for nano-sized Mn oxides to synthesize efficient water-oxidising catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
28
|
Najafpour MM, Isaloo MA, Ghobadi MZ, Amini E, Haghighi B. The effect of different metal ions between nanolayers of manganese oxide on water oxidation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:247-52. [DOI: 10.1016/j.jphotobiol.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/19/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
|
29
|
Zhang Z, Coats KL, Chen Z, Hubin TJ, Yin G. Influence of Calcium(II) and Chloride on the Oxidative Reactivity of a Manganese(II) Complex of a Cross-Bridged Cyclen Ligand. Inorg Chem 2014; 53:11937-47. [DOI: 10.1021/ic501342c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhan Zhang
- Key
Laboratory for Large-Format Battery Materials and System, Ministry
of Education, School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Katherine L. Coats
- Department
of Chemistry and Physics, Southwestern Oklahoma State University, 100
Campus Drive, Weatherford, Oklahoma 73096, United States
| | - Zhuqi Chen
- Key
Laboratory for Large-Format Battery Materials and System, Ministry
of Education, School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Timothy J. Hubin
- Department
of Chemistry and Physics, Southwestern Oklahoma State University, 100
Campus Drive, Weatherford, Oklahoma 73096, United States
| | - Guochuan Yin
- Key
Laboratory for Large-Format Battery Materials and System, Ministry
of Education, School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
30
|
Menezes PW, Indra A, Littlewood P, Schwarze M, Göbel C, Schomäcker R, Driess M. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry. CHEMSUSCHEM 2014; 7:2202-11. [PMID: 25044528 DOI: 10.1002/cssc.201402169] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 05/10/2023]
Abstract
We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1<x<2) upon treatment with CAN, which acted as an oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.
Collapse
Affiliation(s)
- Prashanth W Menezes
- Department of Chemistry, Technische Universität Berlin, Strasse des 17 Juni 135, Sekr. C2, 10623 Berlin (Germany)
| | | | | | | | | | | | | |
Collapse
|
31
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 2014. [DOI: 10.1039/c4ra06181k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we reported nanosized Mn oxide/nanodiamond composites as water-oxidizing compounds.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mahnaz Abasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601, Japan
- PRESTO
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276, Russia
- Institute of Basic Biological Problems
| |
Collapse
|
32
|
Najafpour MM, Abbasi Isaloo M, Abasi M, Hołyńska M. Manganese oxide as a water-oxidizing catalyst: from the bulk to Ångström-scale. NEW J CHEM 2014. [DOI: 10.1039/c3nj01393f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Ghosh D, Saha U, Mukherjea KK. A light harvesting mononuclear manganese(ii) complex: synthesis, characterization, DFT and TDDFT calculations and photophysical profile. RSC Adv 2014. [DOI: 10.1039/c4ra00729h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new manganese(ii) [MnII(DEMP)(NCS)(H2O)] (DEMP = Schiff base derived from salicylaldehyde and 2-diethylaminoethylamine) complex has been synthesized and characterized. The complex absorbs light ranging from 200–850 nm. Thus, the molecule is capable of harvesting the entire range of sunlight falling on earth.
Collapse
Affiliation(s)
- Debalina Ghosh
- Department of Chemistry
- Jadavpur University
- Calcutta (Kolkata), India
| | - Urmila Saha
- Department of Chemistry
- Jadavpur University
- Calcutta (Kolkata), India
| | | |
Collapse
|
34
|
Najafpour MM. An approach for catalyst design in artificial photosynthetic systems: focus on nanosized inorganic cores within proteins. PHOTOSYNTHESIS RESEARCH 2013; 117:197-205. [PMID: 23377954 DOI: 10.1007/s11120-012-9792-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Some enzymes can be considered as a catalyst having a nanosized inorganic core in a protein matrix. In some cases, the metal oxide or sulfide clusters, which can be considered as cofactors in enzymes, may be recruited for use in other related reactions in artificial photosynthetic systems. In other words, one approach to design efficient and environmentally friendly catalysts in artificial photosynthetic systems for the purpose of utilizing sunlight to generate high energy intermediates or useful material is to select and utilize inorganic cores of enzymes. For example, one of the most important goals in developing artificial photosynthesis is hydrogen production. However, first, it is necessary to find a "super catalyst" for water oxidation, which is the most challenging half reaction of water splitting. There is an efficient system for water oxidation in cyanobacteria, algae, and plants. Published data on the Mn-Ca cluster have provided details on the mechanism and structure of the water oxidizing complex as a Mn-Ca nanosized inorganic core in photosystem II. Progress has been made in introducing Mn-Ca oxides as efficient catalysts for water oxidation in artificial photosynthetic systems. Here, in the interest of designing efficient catalysts for other important reactions in artificial photosynthesis, a few examples of our knowledge of inorganic cores of proteins, and how Nature used them for important reactions, are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran,
| |
Collapse
|
35
|
Najafpour MM, Amouzadeh Tabrizi M, Haghighi B, Govindjee. A 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Trans 2013. [PMID: 23178300 DOI: 10.1039/c2dt32236f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we report the synthesis, characterization, and electrochemistry of a 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid. Our results suggest that this compound is a promising model for the manganese cluster together with tyrosine-161 and histidine-190 in photosystem II of plants, algae and cyanobacteria.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
36
|
Dong L, Wang Y, Lv Y, Chen Z, Mei F, Xiong H, Yin G. Lewis-Acid-Promoted Stoichiometric and Catalytic Oxidations by Manganese Complexes Having Cross-Bridged Cyclam Ligand: A Comprehensive Study. Inorg Chem 2013; 52:5418-27. [DOI: 10.1021/ic400361s] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Dong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yujuan Wang
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yanzong Lv
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Hui Xiong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| |
Collapse
|
37
|
Najafpour MM, Amini M, Sedigh DJ, Rahimi F, Bagherzadeh M. Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Adv 2013. [DOI: 10.1039/c3ra45004j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Najafpour MM, Kompany-Zareh M, Zahraei A, Jafarian Sedigh D, Jaccard H, Khoshkam M, Britt RD, Casey WH. Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Trans 2013; 42:14603-11. [DOI: 10.1039/c3dt51406d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Najafpour MM, Leonard KC, Fan FRF, Tabrizi MA, Bard AJ, King'ondu CK, Suib SL, Haghighi B, Allakhverdiev SI. Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. Dalton Trans 2013; 42:5085-91. [DOI: 10.1039/c3dt32864c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Najafpour MM, Pashaei B, Zand Z. Photodamage of the manganese–calcium oxide: a model for UV-induced photodamage of the water oxidizing complex in photosystem II. Dalton Trans 2013; 42:4772-6. [DOI: 10.1039/c3dt50280e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Najafpour MM, Nemati Moghaddam A, Sakha Y. A simple mathematical model for manganese oxide-coated montmorillonite as a catalyst for water oxidation: from nano to macro sized manganese oxide. Dalton Trans 2013; 42:11012-20. [DOI: 10.1039/c3dt50972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Najafpour MM, Sedigh DJ, Pashaei B, Nayeri S. Water oxidation by nano-layered manganese oxides in the presence of cerium(iv) ammonium nitrate: important factors and a proposed self-repair mechanism. NEW J CHEM 2013. [DOI: 10.1039/c3nj00372h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Najafpour MM, Sedigh DJ. Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 2013; 42:12173-8. [DOI: 10.1039/c3dt51345a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Najafpour MM, Moghaddam AN, Yang YN, Aro EM, Carpentier R, Eaton-Rye JJ, Lee CH, Allakhverdiev SI. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment. PHOTOSYNTHESIS RESEARCH 2012; 114:1-13. [PMID: 22941557 DOI: 10.1007/s11120-012-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.
Collapse
|
45
|
Najafpour MM. Biomineralization: a proposed evolutionary origin for inorganic cofactors of enzymes. Theory Biosci 2012; 131:265-72. [PMID: 22872505 DOI: 10.1007/s12064-012-0160-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
Abstract
In this paper, three different reactions of nanoparticles and proteins are explained. As a model system, the interactions of birnessite, which is a common manganese oxide in the environment, and bovine serum albumin, as a protein that has a strong affinity for a variety of inorganic molecules, are studied. The author proposes that the cofactor-formation in particular enzymes may be considered as a biomineralization in the presence of the protein. One of the numerous and very small nanoparticles produced in the presence of protein could be formed in an appropriate location in proteins and be used as a primitive inorganic core (cofactor) of enzyme.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences, 45195-1159 Gava Zang, Zanjan, Iran.
| |
Collapse
|
46
|
Najafpour MM, Rahimi F, Aro EM, Lee CH, Allakhverdiev SI. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 2012; 9:2383-95. [PMID: 22809849 DOI: 10.1098/rsif.2012.0412] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese-calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | | | | | | | | |
Collapse
|
47
|
Najafpour MM, Moghaddam AN, Allakhverdiev SI, Govindjee. Biological water oxidation: lessons from nature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1110-21. [PMID: 22507946 DOI: 10.1016/j.bbabio.2012.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/03/2023]
Abstract
Hydrogen production by water splitting may be an appealing solution for future energy needs. To evolve hydrogen efficiently in a sustainable manner, it is necessary first to synthesize what we may call a 'super catalyst' for water oxidation, which is the more challenging half reaction of water splitting. An efficient system for water oxidation exists in the water oxidizing complex in cyanobacteria, algae and plants; further, recently published data on the Manganese-calcium cluster have provided details on the mechanism and structure of the water oxidizing complex. Here, we have briefly reviewed the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system. In short, to design an efficient water oxidizing complex for artificial photosynthesis, we must learn and use wisely the knowledge about water oxidation and the water oxidizing complex in the natural system. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
48
|
New mononuclear manganese(II) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) – selective catalyst in UHP oxidation of sulfides. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Amini M, Najafpour MM, Nayeri S, Pashaei B, Bagherzadeh M. Nano-layered manganese oxides as low-cost, easily synthesized, environmentally friendly and efficient catalysts for epoxidation of olefins. RSC Adv 2012. [DOI: 10.1039/c2ra20297b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Sakamoto R, Tsukada S, Nishihara H. Multinuclear metalladithiolenes: focusing on electronic communication in mixed-valent states. Dalton Trans 2012; 41:10123-35. [DOI: 10.1039/c2dt30787a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|