1
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
2
|
Götze JP, Anders F, Petry S, Felix Witte J, Lokstein H. Spectral Characterization of the Main Pigments in the Plant Photosynthetic Apparatus by Theory and Experiment. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Petry S, Götze JP. Effect of protein matrix on CP29 spectra and energy transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148521. [PMID: 34896078 DOI: 10.1016/j.bbabio.2021.148521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
We investigate energy transfer pathways between strongly coupled chlorophylls (Chls) in the CP29 (LHCII B4.1) antenna complex of Pisum sativum, including the possibility of higher energy states. We test for the environmental effects caused by the protein, membrane and solvent using a hybrid QM/MM approach. Classical molecular dynamics simulations of the full CP29 complex embedded in a DOPC membrane have been performed, followed by calculations of the time dependent DFT spectra of all Chls at several timesteps. The relative orientations of transition dipole moments (TDMs) were specifically analyzed, including and excluding the point charge field (PCF) of the surrounding environment. The PCF is found to drastically shift the spectra of specific Chls, while the majority of Chls is mostly unaffected. The net effect on the sum spectrum is however found to be negligible: The few strong changes in Chl spectra cancel each other due to being opposite in sign. We further find that the spectra of the Chls coordinating to water show a blue shift upon introduction of the environment. Conversely, the spectra of the Chls coordinating to glutamine show a red shift upon activation of the PCF. As the main influence of the PCF for tuning the couplings, we identify the energetic position of the individual chromophores. The fine-tuning, especially for states energetically above the Qy state, is however controlled by the changes in the TDM orientations. We also find an indication for the PCF to steer potentially harmful high energy excitations away from the PSII core complex.
Collapse
Affiliation(s)
- S Petry
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - J P Götze
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
5
|
Sláma V, Cupellini L, Mennucci B. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Phys Chem Chem Phys 2020; 22:16783-16795. [PMID: 32662461 DOI: 10.1039/d0cp02492a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a fully atomistic simulation of linear optical spectra (absorption, fluorescence and circular dichroism) of the Light Harvesting Complex II (LHCII) trimer using a hybrid approach, which couples a quantum chemical description of the chlorophylls with a classical model for the protein and the external environment (membrane and water). The classical model uses a polarizable Molecular Mechanics force field, thus allowing mutual polarization effects in the calculations of the excitonic properties. The investigation is performed both on the crystal structure and on structures generated by a μs long classical molecular dynamics simulation of the complex within a solvated membrane. The results show that this integrated approach not only provides a good description of the excitonic properties and optical spectra without the need for additional refinements of the excitonic parameters, but it also allows an atomistic investigation of the relative importance of electronic, structural and environment effects in determining the optical spectra.
Collapse
Affiliation(s)
- Vladislav Sláma
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy.
| | | | | |
Collapse
|
6
|
Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. PHOTOSYNTHESIS RESEARCH 2020; 144:171-193. [PMID: 32307623 DOI: 10.1007/s11120-020-00745-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.
Collapse
Affiliation(s)
- Evgeny E Ostroumov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, V6T 1Z1, Canada
| | - Jan P Götze
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Petar H Lambrev
- Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
| |
Collapse
|
7
|
Götze JP. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. J Phys Chem B 2019; 123:2203-2209. [PMID: 30779570 DOI: 10.1021/acs.jpcb.8b09841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose the ultrafast S2 (1Bu) to S1 (2Ag) "electronic internal conversion" observed in carotenoids to be a vibrational relaxation of the 1Bu state. This suggestion arises from comparing excited-state geometries computed with the CAM-B3LYP density functional to the ground states; it is found that each conjugated atom moves less than 5 pm in, for example, violaxanthin. However, the changes of excitation energies are large, ranging from 0.4 to 1.2 eV. This is connected to the size of the conjugated system: while each atom contributes only 0.02-0.06 eV, the sum amounts to the observed shift. Additional analysis of computational data is provided from new or already published calculations. As the mechanism may be valid for all linear polyenes, the model has implications that go beyond the presented case of carotenoids. Finally, four sets of experimental data on carotenoids published elsewhere are reinterpreted. The model predicts near-infrared (IR) absorptions and transient femtosecond IR spectra within 0.1 eV accuracy.
Collapse
Affiliation(s)
- Jan P Götze
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie , Freie Universität Berlin , Takustr. 3 14195 Berlin , Germany
| |
Collapse
|
8
|
Fox KF, Ünlü C, Balevičius V, Ramdour BN, Kern C, Pan X, Li M, van Amerongen H, Duffy CD. A possible molecular basis for photoprotection in the minor antenna proteins of plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:471-481. [DOI: 10.1016/j.bbabio.2018.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022]
|
9
|
Fox KF, Balevičius V, Chmeliov J, Valkunas L, Ruban AV, Duffy CDP. The carotenoid pathway: what is important for excitation quenching in plant antenna complexes? Phys Chem Chem Phys 2017; 19:22957-22968. [DOI: 10.1039/c7cp03535g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant light-harvesting is regulated by the Non-Photochemical Quenching (NPQ) mechanism involving the slow trapping of excitation energy by carotenoids in the Photosystem II (PSII) antenna in response to high light.
Collapse
Affiliation(s)
- Kieran F. Fox
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London E1 4NS
- UK
| | - Vytautas Balevičius
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London E1 4NS
- UK
| | - Jevgenij Chmeliov
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- Sauletekio Ave. 9
- 10222 Vilnius
| | - Leonas Valkunas
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- Sauletekio Ave. 9
- 10222 Vilnius
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London E1 4NS
- UK
| | | |
Collapse
|
10
|
Abstract
The design of optimal light-harvesting (supra)molecular systems and materials is one of the most challenging frontiers of science. Theoretical methods and computational models play a fundamental role in this difficult task, as they allow the establishment of structural blueprints inspired by natural photosynthetic organisms that can be applied to the design of novel artificial light-harvesting devices. Among theoretical strategies, the application of quantum chemical tools represents an important reality that has already reached an evident degree of maturity, although it still has to show its real potentials. This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.
Collapse
Affiliation(s)
- Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
11
|
Fox KF, Bricker WP, Lo C, Duffy CDP. Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex. J Phys Chem B 2015; 119:15550-60. [DOI: 10.1021/acs.jpcb.5b08941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. F. Fox
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| | - William P. Bricker
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - Cynthia Lo
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - C. D. P. Duffy
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| |
Collapse
|
12
|
Götze JP, Karasulu B, Patil M, Thiel W. Vibrational relaxation as the driving force for wavelength conversion in the peridinin-chlorophyll a-protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1509-17. [PMID: 26231454 DOI: 10.1016/j.bbabio.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
We present a computationally derived energy transfer model for the peridinin-chlorophyll a-protein (PCP), which invokes vibrational relaxation in the two lowest singlet excited states rather than internal conversion between them. The model allows an understanding of the photoinduced processes without assuming further electronic states or a dependence of the 2Ag state character on the vibrational sub-state. We report molecular dynamics simulations (CHARMM22 force field) and quantum mechanics/molecular mechanics (QM/MM) calculations on PCP. In the latter, the QM region containing a single peridinin (Per) chromophore or a Per-Chl a (chlorophyll a) pair is treated by density functional theory (DFT, CAM-B3LYP) for geometries and by DFT-based multireference configuration interaction (DFT/MRCI) for excitation energies. The calculations show that Per has a bright, green light absorbing 2Ag state, in addition to the blue light absorbing 1Bu state found in other carotenoids. Both states undergo a strong energy lowering upon relaxation, leading to emission in the red, while absorbing in the blue or green. The orientation of their transition dipole moments indicates that both states are capable of excited-state energy transfer to Chl a, without preference for either 1Bu or 2Ag as donor state. We propose that the commonly postulated partial intramolecular charge transfer (ICT) character of a donating Per state can be assigned to the relaxed 1Bu state, which takes on ICT character. By assuming that both 1Bu and 2Ag are able to donate to the Chl a Q band, one can explain why different chlorophyll species in PCP exhibit different acceptor capabilities.
Collapse
Affiliation(s)
- Jan P Götze
- School of Chemistry, North Haugh, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| | - Bora Karasulu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Mahendra Patil
- Center for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098, Maharashtra, India
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 815] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
14
|
Götze JP, Kröner D, Banerjee S, Karasulu B, Thiel W. Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow. Chemphyschem 2014; 15:3392-401. [PMID: 25179982 DOI: 10.1002/cphc.201402233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 11/11/2022]
Abstract
It is proposed that xanthophylls, and carotenoids in general, may assist in energy transfer from the chlorophyll Soret band to the Q band. Ground-state (1Ag ) and excited-state (1Bu ) optimizations of violaxanthin (Vx) and zeaxanthin (Zx) are performed in an environment mimicking the light-harvesting complex II (LHCII), including the closest chlorophyll b molecule (Chl). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) is used in combination with a semi-empirical description to obtain the excited-state geometries, supported by additional DFT/multireference configuration interaction calculations, with and without point charges representing LHCII. In the ground state, Vx and Zx show similar properties. At the 1Bu minimum, the energy of the Zx 1Bu state is below the Chl Q band, in contrast to Vx. Both Vx and Zx may act as acceptors of Soret-state energy; transfer to the Q band seems to be favored for Vx. These findings suggest that carotenoids may generally mediate Soret-to-Q energy flow in LHCII.
Collapse
Affiliation(s)
- Jan P Götze
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany).
| | | | | | | | | |
Collapse
|
15
|
Duffy CDP, Valkunas L, Ruban AV. Quantum Mechanical Calculations of Xanthophyll–Chlorophyll Electronic Coupling in the Light-Harvesting Antenna of Photosystem II of Higher Plants. J Phys Chem B 2013; 117:7605-14. [DOI: 10.1021/jp4025848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. D. P. Duffy
- School of Biological and Chemical
Sciences, Queen Mary College, University of London, Mile End, Bancroft Road, London, E1 4NS, United Kingdom
| | - L. Valkunas
- Theoretical Physics Department,
Faculty of Physics, Vilnius University,
Saulėteko al. 9, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Savanorių 231, LT-02300
Vilnius, Lithuania
| | - A. V. Ruban
- School of Biological and Chemical
Sciences, Queen Mary College, University of London, Mile End, Bancroft Road, London, E1 4NS, United Kingdom
| |
Collapse
|
16
|
Götze JP, Thiel W. TD-DFT and DFT/MRCI study of electronic excitations in Violaxanthin and Zeaxanthin. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Banerjee S, Kröner D, Saalfrank P. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene. J Chem Phys 2012; 137:22A534. [DOI: 10.1063/1.4748147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Macernis M, Sulskus J, Duffy CDP, Ruban AV, Valkunas L. Electronic Spectra of Structurally Deformed Lutein. J Phys Chem A 2012; 116:9843-53. [DOI: 10.1021/jp304363q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mindaugas Macernis
- Theoretical Physics Department,
Faculty of Physics, Vilnius University,
Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Savanorių 231, LT-02300
Vilnius, Lithuania
| | - Juozas Sulskus
- Theoretical Physics Department,
Faculty of Physics, Vilnius University,
Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
| | - Christopher D. P. Duffy
- School
of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4TN, U.K
| | - Alexander V. Ruban
- School
of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4TN, U.K
| | - Leonas Valkunas
- Theoretical Physics Department,
Faculty of Physics, Vilnius University,
Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Savanorių 231, LT-02300
Vilnius, Lithuania
| |
Collapse
|