1
|
Feng Y, Chi S, Zhao Y, Zhang Y, Wu Y. Cellular deoxyribonucleic-acid probes of two-photon-excited fluorescent quinolinium-substituted carbazole. Analyst 2019; 144:1245-1252. [DOI: 10.1039/c8an01597j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new quinolinium-carbazole derivatives as deoxyribonucleic-acid probes irradiated with near-infrared-light have been designed and synthesized.
Collapse
Affiliation(s)
- Yanru Feng
- Key Lab of Functional Inorganic Material Chemistry
- Heilongjiang University
- Harbin 150080
- PR China
- Pharmacy College
| | - Shuheng Chi
- Key Laboratory of Material Science and Technology for High Power Lasers
- Shanghai Institute of Optics and Fine Mechanics
- Chinese Academy of Sciences
- Shanghai 201800
- PR China
| | - Yanli Zhao
- Pharmacy College
- University of Jiamusi
- Jiamusi 154007
- PR China
| | - Yunjie Zhang
- Pharmacy College
- University of Jiamusi
- Jiamusi 154007
- PR China
| | - Yiqun Wu
- Key Lab of Functional Inorganic Material Chemistry
- Heilongjiang University
- Harbin 150080
- PR China
- Key Laboratory of Material Science and Technology for High Power Lasers
| |
Collapse
|
2
|
Wu D, Zhao Y, Fu S, Zhang J, Wang W, Yan Z, Guo H, Liu A. Seleno-short-chain chitosan induces apoptosis in human breast cancer cells through mitochondrial apoptosis pathway in vitro. Cell Cycle 2018; 17:1579-1590. [PMID: 29895197 DOI: 10.1080/15384101.2018.1464845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and -3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.
Collapse
Affiliation(s)
- Di Wu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Yana Zhao
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Shengnan Fu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Jianbo Zhang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Wenhang Wang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Zhexian Yan
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Heng Guo
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Anjun Liu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| |
Collapse
|
3
|
Knorr G, Kozma E, Herner A, Lemke EA, Kele P. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes. Chemistry 2016; 22:8972-9. [PMID: 27218228 DOI: 10.1002/chem.201600590] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/09/2022]
Abstract
The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.
Collapse
Affiliation(s)
- Gergely Knorr
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Eszter Kozma
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - András Herner
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Sasagawa S, Nishimura Y, Koiwa J, Nomoto T, Shintou T, Murakami S, Yuge M, Kawaguchi K, Kawase R, Miyazaki T, Tanaka T. In Vivo Detection of Mitochondrial Dysfunction Induced by Clinical Drugs and Disease-Associated Genes Using a Novel Dye ZMJ214 in Zebrafish. ACS Chem Biol 2016; 11:381-8. [PMID: 26630578 DOI: 10.1021/acschembio.5b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction has been implicated in various drug-induced toxicities and genetic disorders. Recently, the zebrafish has emerged as a versatile animal model for both chemical and genetic screenings. Taking advantage of its transparency, various in vivo fluorescent imaging methods have been developed to identify novel functions of chemicals and genes in zebrafish. However, there have not been fluorescent probes that can detect mitochondrial membrane potential in living zebrafish. In this study, we identified a novel cyanine dye called ZMJ214 that detects mitochondrial membrane potential in living zebrafish from 4 to 8 days post fertilization and is administered by simple immersion. The fluorescence intensity of ZMJ214 in zebrafish was increased and decreased by oligomycin and FCCP, respectively, suggesting a positive correlation between ZMJ214 fluorescence and mitochondrial membrane potential. In vivo imaging of zebrafish stained with ZMJ214 allowed for the detection of altered mitochondrial membrane potential induced by the antidiabetic drug troglitazone and the antiepileptic drug tolcapone, both of which have been withdrawn from the market due to mitochondrial toxicity. In contrast, pioglitazone and entacapone, which are similar to troglitazone and tolcapone, respectively, and have been used commercially, did not cause a change in mitochondrial membrane potential in zebrafish stained with ZMJ214. Live imaging of zebrafish stained with ZMJ214 also revealed that knock-down of slc25a12, a mitochondrial carrier protein associated with autism, dysregulated the mitochondrial membrane potential. These results suggest that ZMJ214 can be a useful tool to identify chemicals and genes that cause mitochondrial dysfunction in vivo.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Mie University Medical Zebrafish Research Center, Tsu, Mie 514-8507, Japan
- Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Omics
Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie 514-8507, Japan
| | - Junko Koiwa
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tsuyoshi Nomoto
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Taichi Shintou
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Soichiro Murakami
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Mizuki Yuge
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koki Kawaguchi
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Reiko Kawase
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takeshi Miyazaki
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Toshio Tanaka
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Mie University Medical Zebrafish Research Center, Tsu, Mie 514-8507, Japan
- Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Omics
Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie 514-8507, Japan
| |
Collapse
|
5
|
Patel NJ, Manivannan E, Joshi P, Ohulchanskyy TJ, Nani RR, Schnermann MJ, Pandey RK. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near-Infrared Cyanine-like Dyes. Photochem Photobiol 2015; 91:1219-30. [PMID: 26108696 DOI: 10.1111/php.12482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
This report presents a simple strategy to introduce various functionalities in a cyanine dye (bis-indole-N-butylsulfonate-polymethine bearing a fused cyclic chloro-cyclohexene ring structure), and assess the impact of these substitutions in tumor uptake, retention and imaging. The results obtained from the structural activity relationship (SAR) study demonstrate that certain structural features introduced in the cyanine dye moiety make a remarkable difference in tumor avidity. Among the compounds investigated, the symmetrical CDs containing an amino-phenyl thioether group attached to a cyclohexene ring system and the two N-butyl linkers with terminal sulfonate groups in benzoindole moieties exhibited excellent tumor imaging ability in BALB/c mice bearing Colon26 tumors. Compared to indocyanine green (ICG), approved by FDA as a blood pooling agent, which has also been investigated for the use in tumor imaging, the modified CD selected on the basis of SAR study produced enhanced uptake and longer retention in tumor(s). A facile approach reported herein for introducing a variety of functionalities in tumor-avid CD provides an opportunity to create multi-imaging modality agent(s). Using a combination of mass spectrometry and absorbance techniques, the photobleaching of one of the CDs was analyzed and significant regioselective photooxidation was observed.
Collapse
Affiliation(s)
- Nayan J Patel
- Department of Molecular Pharmacology and Cancer Therapeutics, Cell Stress Biology Roswell Park Cancer Institute, Buffalo, NY.,PDT Center, Cell Stress Biology Roswell Park Cancer Institute, Buffalo, NY
| | | | - Penny Joshi
- PDT Center, Cell Stress Biology Roswell Park Cancer Institute, Buffalo, NY
| | | | - Roger R Nani
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Martin J Schnermann
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Ravindra K Pandey
- Department of Molecular Pharmacology and Cancer Therapeutics, Cell Stress Biology Roswell Park Cancer Institute, Buffalo, NY.,PDT Center, Cell Stress Biology Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
6
|
Tropcheva R, Lesev N, Danova S, Stoitsova S, Kaloyanova S. Novel cyanine dyes and homodimeric styryl dyes as fluorescent probes for assessment of lactic acid bacteria cell viability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:120-9. [PMID: 25618816 DOI: 10.1016/j.jphotobiol.2015.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/26/2014] [Accepted: 01/03/2015] [Indexed: 11/28/2022]
Abstract
Innovations in labeling techniques and in the design and synthesis of dye structures are closely related to the development of service equipment such as light sources and detection methods. Novel styryl homodimers and monomethine cyanine dyes were synthesized and their staining abilities for discrimination between live and dead lactic acid bacterial cells were investigated. The dyes were combined in pairs based on their excitation and emission maxima and the capacity to penetrate through cell membranes of viable bacterial cells. The absorption maxima in the same region and the large Stocks shifts of the styryl derivatives allowed viability analysis to be done with epifluorescent microscope with a very basic configuration - one light source about 480nm and one filter for the fluorescent emissions. A staining protocol was developed and applied for live/dead analysis of Bulgarian yoghurt starters. The live cells quantification by the fluorescence dyes coincided well with the results of the much more time-consuming tests by plate counting. Thus, the proposed dye combinations are appropriate for rapid viability estimation in small laboratories that may have conventional equipment.
Collapse
Affiliation(s)
- Rositsa Tropcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nedyalko Lesev
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Ave., 1164 Sofia, Bulgaria
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefka Kaloyanova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Ave., 1164 Sofia, Bulgaria.
| |
Collapse
|
7
|
Herner A, Estrada Girona G, Nikić I, Kállay M, Lemke EA, Kele P. New generation of bioorthogonally applicable fluorogenic dyes with visible excitations and large Stokes shifts. Bioconjug Chem 2014; 25:1370-4. [PMID: 24932756 DOI: 10.1021/bc500235p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis of a set of new, azide bearing, biorthogonally applicable fluorogenic dyes with large Stokes shifts is presented herein. To assess the fluorogenic performance of these new dyes we have labeled a genetically modulated, cyclooctyne-bearing protein in lysate medium. Studies showed that the labels produce specific signal with minimal background fluorescence. We also provide theoretical insights into the design of such fluorogenic labels.
Collapse
Affiliation(s)
- András Herner
- "Lendület" Chemical Biology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|