1
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
2
|
A Novel Algicidal Bacterium and Its Effects against the Toxic Dinoflagellate Karenia mikimotoi (Dinophyceae). Microbiol Spectr 2022; 10:e0042922. [PMID: 35616372 PMCID: PMC9241683 DOI: 10.1128/spectrum.00429-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxic dinoflagellate Karenia mikimotoi is a harmful algal bloom-forming species in coastal areas around the world. It produces ichthyotoxins and hemolytic toxins, with deleterious effects on marine ecosystems. In this study, the bacterium Pseudoalteromonas sp. FDHY-MZ2, with high algicidal efficiency against K. mikimotoi, was isolated from a bloom event. Based on the results, it completely lysed K. mikimotoi cells within 24 h 0.5% (vol/vol), with the algicidal activity of the supernatant of the bacterium culture. Algal cell wall fragmentation occurred, leading to cell death. There was a marked decline in various photochemical traits. When treated with the supernatant, cellulase, pheophorbide a oxygenase (PAO) and cyclin B genes were significantly increased, suggesting induced cell wall deterioration, chloroplast degradation and cell cycle regulation of K. mikimotoi cells. In addition, the expression levels of reactive oxygen species (ROS) scavenging gene was significantly inhibited, indicating that the ROS removal system was damaged. The bacterial culture was dried to obtain the spray-dried powder, which showed algicidal activity rates of 92.2 and 100% against a laboratory K. mikimotoi culture and a field microcosm of Karlodinium sp. bloom within 24 h with the addition of 0.04% mass fraction powder. Our results demonstrate that FDHY-MZ2 is a suitable strain for K. mikimotoi and Karlodinium sp. blooms management. In addition, this study provides a new strategy for the anthropogenic control of harmful algal bloom-forming species in situ. IMPORTANCE K. mikimotoi is a noxious algal bloom-forming species that cause damaging of the aquaculture industry and great financial losses. Bacterium with algicidal activity is an ideal agency to inhibit the growth of harmful algae. In this approach application, the bacterium with high algicidal activity is required and the final management material is ideal for easy-to-use. The algicidal characteristics are also needed to understand the effects of the bacterium for managing strategy exploration. In this study, we isolated a novel algicidal bacterium with extremely high lysis efficiency for K. mikimotoi. The algicidal characteristics of the bacterium as well as the chemical and molecular response of K. mikimotoi with the strain challenge were examined. Finally, the algicidal powder was explored for application. The results demonstrate that FDHY-MZ2 is suitable for K. mikimotoi and Karlodinium sp. blooms controlling, and this study provides a new strategy for algicidal bacterium application.
Collapse
|
3
|
Assunção J, Amaro HM, Lopes G, Tavares T, Malcata FX, Guedes AC. Karlodinium veneficum: Growth optimization, metabolite characterization and biotechnological potential survey. J Appl Microbiol 2021; 132:2844-2858. [PMID: 34865282 DOI: 10.1111/jam.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
AIM OF THIS STUDY The major aim of this work was to consistently optimize the production of biomass of the dinoflagellate Karlodinium veneficum and evaluate its extracts biotechnological potential application towards food, nutraceutical or/and pharmaceutical industries. METHODS AND RESULTS A successful approach of biomass production of K. veneficum CCMP 2936 was optimized along with the chemical characterization of its metabolite profile. Several temperatures (12, 16, 20, 25, 30°C), L1 nutrient concentrations (0.5×, 2×, 2.5×, 3×) and NaCl concentrations (20, 25, 30, 40 g L-1 ) were tested. The growth rate was maximum at 16°C, 2× nutrient concentration and 40 g L-1 of NaCl; hence, these conditions were chosen for bulk production of biomass. Methanolic extracts were prepared, and pigments, lipids and phenolic compounds were assessed; complemented by antioxidant and anti-inflammatory capacities, and cytotoxicity. Fucoxanthin and derivatives accounted for 0.06% of dry weight, and up to 60% (w/w) of all quantified metabolites were lipids. Said extracts displayed high antioxidant capacity, as towards assessed via the NO•- and ABTS•+ assays (IC50 = 109.09 ± 6.73 and 266.46 ± 2.25 µgE ml-1 , respectively), unlike observed via the O2 •- assay (IC25 reaching 56.06 ± 5.56 µgE ml-1 ). No signs of cytotoxicity were observed. CONCLUSIONS Karlodinium veneficum biomass production was consistently optimized in terms of temperature, L1 nutrient concentrations and NaCl concentration. In addition, this strain appears promising for eventual biotechnological exploitation. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides fundamental insights about the growth and potential of value-added compounds of dinoflagellate K. veneficum. Dinoflagellates, as K. veneficum are poorly studied regarding its biomass production and added-value compounds for potential biotechnological exploitation. These organisms are difficult to maintain and grow in the laboratory. Thus, any fundamental contribution is relevant to share with the scientific community.
Collapse
Affiliation(s)
- Joana Assunção
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edíficio do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
| | - Helena M Amaro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edíficio do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Graciliana Lopes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edíficio do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Tânia Tavares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
| | - F Xavier Malcata
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal.,FEUP - Faculty of Engineering of University of Porto, Porto, Portugal
| | - A Catarina Guedes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edíficio do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| |
Collapse
|
4
|
Recent Progress in the Study of Peroxiredoxin in the Harmful Algal Bloom Species Chattonella marina. Antioxidants (Basel) 2021; 10:antiox10020162. [PMID: 33499182 PMCID: PMC7911785 DOI: 10.3390/antiox10020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin (Prx) is a relatively recently discovered antioxidant enzyme family that scavenges peroxides and is known to be present in organisms from biological taxa ranging from bacteria to multicellular eukaryotes, including photosynthetic organisms. Although there have been many studies of the Prx family in higher plants, green algae, and cyanobacteria, few studies have concerned raphidophytes and dinoflagellates, which are among the eukaryotic algae that cause harmful algal blooms (HABs). In our proteomic study using 2-D electrophoresis, we found a highly expressed 2-Cys peroxiredoxin (2-CysPrx) in the raphidophyte Chattonella marina var. antiqua, a species that induces mass mortality of aquacultured fish. The abundance of the C. marina 2-CysPrx enzyme was highest in the exponential growth phase, during which photosynthetic activity was high, and it then decreased by about a factor of two during the late stationary growth phase. This pattern suggested that 2-CysPrx is a key enzyme involved in the maintenance of high photosynthesis activity. In addition, the fact that the depression of photosynthesis by excessively high irradiance was more severe in the 2-CysPrx low-expression strain (wild type) than in the normal-expression strain (wild type) of C. marina suggested that 2-CysPrx played a critical role in protecting the cell from oxidative stress caused by exposure to excessively high irradiance. In the field of HAB research, estimates of growth potential have been desired to predict the population dynamics of HABs for mitigating damage to fisheries. Therefore, omics approaches have recently begun to be applied to elucidate the physiology of the growth of HAB species. In this review, we describe the progress we have made using a molecular physiological approach to identify the roles of 2-CysPrx and other antioxidant enzymes in mitigating environmental stress associated with strong light and high temperatures and resultant oxidative stress. We also describe results of a survey of expressed Prx genes and their growth-phase-dependent behavior in C. marina using RNA-seq analysis. Finally, we speculate about the function of these genes and the ecological significance of 2-CysPrx, such as its involvement in circadian rhythms and the toxicity of C. marina to fish.
Collapse
|
5
|
Tilney CL, Shankar S, Hubbard KA, Corcoran AA. Is Karenia brevis really a low-light-adapted species? HARMFUL ALGAE 2019; 90:101709. [PMID: 31806165 DOI: 10.1016/j.hal.2019.101709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/03/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Despite nearly annual blooms of the neurotoxic dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup in the Gulf of Mexico, defining the suite of biological traits that explain its proliferation has remained challenging. Studies have described K. brevis as a low-light-adapted species, incapable of sustaining growth under high light, which is at odds with observed surface aggregations sometimes within centimeters of the sea surface and also with short-term experiments showing photosynthetic machinery accommodating high irradiances. Here, growth and photophysiology of three K. brevis isolates were evaluated under a range of environmentally relevant irradiances (10-1500 μmol photons m-2 s-1) in the laboratory. No differences in growth-irradiance curves were observed among isolates; all sustained maximum growth rates at the highest irradiances examined, even in exposures as long as three weeks. The growth efficiency α of K. brevis under light-limiting conditions appeared mediocre among dinoflagellates, and poorer than that of other phytoplankton (e.g., diatoms, cyanobacteria), implying that K. brevis is not a low-light specialist. This finding substantially alters earlier parameterizations of K. brevis growth-irradiance curves. Therefore, a model was developed to contextualize how these new growth-irradiance curves might affect bottom growth rates. This model was subsequently applied to a case study comparing seasonal light forcing offshore of Pinellas County, FL, USA, with a single empirical value for light attenuation, and seasonal bottom water temperatures. Predictions suggested that light may limit bottom growth as close as 1 km from shore in winter, but would only begin limiting growth 20 km from shore in summer. Population maintenance (no net growth) was possible as far offshore as 90 km in summer and 68 km in winter. These ranges intercept areas thought to be important for bloom initiation.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA.
| | - Sugandha Shankar
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| | - Alina A Corcoran
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
6
|
Critical light-related gene expression varies in two different strains of the dinoflagellate Karlodinium veneficum in response to the light spectrum and light intensity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:76-83. [PMID: 30933874 DOI: 10.1016/j.jphotobiol.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
The toxic dinoflagellate Karlodinium veneficum is widely distributed in cosmopolitan estuaries and is responsible for massive fish mortality worldwide. Intraspecific biodiversity is important for the spread to various habitats, interspecific competition to dominate a population, and bloom formation and density maintenance. Strategies for light adaptation may help determine the ecological niches of different ecotypes. However, the mechanism of phenotypic biodiversity is still unclear. In this study, intraspecific differences in genetic regulatory mechanisms in response to varied light intensities and qualities were comparatively researched on two different strains isolated from coastal areas of the East China Sea, namely, GM2 and GM3. In GM2, the expression of genes in the Calvin cycle, namely, rbcL and SBPase, and a light-related gene that correlated with cellular motility, rhodopsin, were significantly inhibited under high light intensities. Thus, this strain was adapted to low light. In contrast, the gene expression levels were promoted by high light conditions in GM3. These upregulated genes in the GM3 strain probably compensated for the negative effects on the maximum quantum yields of PSII (Fv/Fm) under high light stress, which inhibited both strains, enabling GM3 to maintain a constant growth rate. Thus, this strain was adapted to high light. Compared with white light, monochromatic blue light had negative effects on Fv/Fm and the relative electron transfer rate (ETR) in both strains. Under blue light, gene expression levels of rbcL and SBPase in GM2 were inhibited; in contrast, the levels of these genes, especially rbcL, were promoted in GM3. rbcL was significantly upregulated in the blue light groups. Monochromatic red light promoted rhodopsin gene expression in the two strains in a similar manner. These intraspecific diverse responses to light play important roles in the motor characteristics, diel vertical migration, interspecific relationships and photosynthetic or phagotrophic activities of K. veneficum and can determine the population distribution, population maintenance and bloom formation.
Collapse
|
7
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|