1
|
Ragheb MA, Ragab MS, Mahdy FY, Elsebaie MS, Saber AM, AbdElmalak YO, Elsafoury RH, Elatreby AA, Rochdi AM, El-Basyouni AW, Shoukry MM, Eldeeb MA, El-Sherif RM, Abdelhamid IA, Salah-Eldin DS. Folic acid-modified chitosan nanoparticles for targeted delivery of a binuclear Co(II) complex in cancer therapy. Int J Biol Macromol 2025:144034. [PMID: 40345288 DOI: 10.1016/j.ijbiomac.2025.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
A salient challenge in cancer chemotherapy is the successful delivery of drugs to cancer cells. Therapeutic agents can be delivered to cancer cells in a targeted and efficient manner using nanoparticles (NPs). We present the molecular characterization of a novel binuclear Co(II) complex with octahedral geometry based on Schiff base from dehydroacetic acid and piperazine derivatives. DNA and BSA binding interactions were investigated using UV-Vis spectroscopy and gel electrophoresis. In vitro cytotoxicity of Co(II) complex was assessed against microbes and human cells (Cancer: MDA-MB-231, MCF7, A375, HepG2; Non-cancerous: HSF, WI-38) using well diffusion and MTT assays. Chitosan decorated with folic acid (CS-FA) was fabricated to encapsulate Co(II) complex, which may serve as a nano-targeted drug delivery system, to dampen its adverse effects on non-cancerous cells. TEM and DLS analysis confirmed nano-sized and stable monodisperse nanosuspension of both (CS-FA) and (CS-FA-Co(II) complex) systems. CS-FA-Co(II) complex NPs exhibited an 8.3-fold increase in cytotoxicity against folate-receptor-positive MDA-MB-231 cells, while remaining safe for folate-receptor-negative HSF cells. They also induced cell cycle arrest, inhibited migration, and triggered apoptosis by modulating Bax, Bcl-2, caspase-3, and CDH1. These findings highlight CS-FA NPs as a promising targeted delivery system for Co(II) complex-based cancer therapeutic agents, offering improved efficacy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt.
| | - Mona S Ragab
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Fatma Y Mahdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed S Elsebaie
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Youstina O AbdElmalak
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal A Elatreby
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed W El-Basyouni
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed M Shoukry
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed A Eldeeb
- Department of Chemistry, Illinois State University, IL, United States.
| | - Rabab M El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Faculty of Postgraduate Studies for Nanotechnology, Cairo University, P.O. 12588, Giza, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt.
| | - Doaa S Salah-Eldin
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| |
Collapse
|
2
|
Mehandi R, Twala C, Ahmedi S, Fatima A, Ul Islam K, Rana M, Sultana R, Manzoor N, Javed S, Mahfuzul Haque M, Iqbal J, Rahisuddin, Nishat N. 1,3,4-oxadiazole derivatives: synthesis, characterization, antifungal activity, DNA binding investigations, TD-DFT calculations, and molecular modelling. J Biomol Struct Dyn 2025; 43:1723-1755. [PMID: 39886763 DOI: 10.1080/07391102.2023.2292796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/25/2023] [Indexed: 02/01/2025]
Abstract
1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized via cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,1H and 13C-NMR, UV-visible spectroscopy, and mass spectrometry. In-vitro antifungal activity was performed against C. albicans, C. glabrata and C. tropicalis and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm. The cell viability on Huh7 for lead molecules 3g, 3i, and 3m was found to be 99.5%, 92.3%, and 86.9% at 20, 10, and 20 μM, respectively. The antioxidant activity of molecules 3 g, 3i, and 3 m was estimated and exhibited great IC50 values of 0.104 ± 0.021, 0.145 ± 0.05, and 0.165 ± 0.018 μg/mL with DPPH and 0.107 ± 0.04, 0.191 ± 0.12, and 0.106 ± 0.08 with H2O2, respectively. The binding interaction mode for the lead molecules was also carried out with Ct-DNA using the absorption, emission, CV, CD, and Time resolve fluorescence techniques. The results showed good binding constant (Kb) values of 9.1 × 105, 9.94 × 105, and 9.32 × 105 M-1 for 3g, 3i, and 3m, respectively. TD-DFT study of compounds 3g, 3i, and 3m was done to find out HOMO/LUMO energy levels, surface study of the molecular electrostatic potential, Mulliken population analysis, and natural bond orbitals showing the linkages between the donors and acceptors.Molecular docking of three lead analogs with PDB ID: 1BNA and molecular modelling of compounds 3g, 3i, and 3m with C. albicans CYP51 protein (PDB ID: 5FSA) were carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumers Science, University of South Africa, Florida, South Africa
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Aysha Fatima
- S. O. S. in Chemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Khursheed Ul Islam
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Saleem Javed
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | - Jawed Iqbal
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nahid Nishat
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Li T, Guo FF, Mu XP, Sun P, Zhang X, Xu ZH, Yu RL, Xia YM, Gao WW. Electrochemical detection of genetic damage caused by the interaction of novel bifunctional anthraquinone-temozolomide antitumor hybrids with DNA modified electrode. J Pharm Biomed Anal 2023; 231:115410. [PMID: 37087773 DOI: 10.1016/j.jpba.2023.115410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
In this work, novel potential anthraquinone-temozolomide (TMZ) antitumor hybrids N-(2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)ethyl)-3-methyl-4-oxo-3,4-dihydroimidazo [5, 1-d][1,2,3,5]tetrazine-8-carboxamide (C-1) and 2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)amino) ethyl-3-methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylate (C-9) were designed and synthesized successfully. The electrochemical behaviors of C-1 (C-9) involved the reversible processes of 9,10-anthraquinone ring, the irreversible reduction and oxidation processes of TMZ ring. Electrochemical biosensors were constructed with ctDNA, poly (dG) and poly (dA) modifying the surface of glassy carbon electrode (GCE) to evaluate the DNA oxidative damage caused by the interaction of C-1 (C-9) with DNA. Anthracycline skeleton and TMZ ring in C-1 (C-9) could exhibit bifunctional effects with both intercalating and alkylation modes toward DNA strands. The DNA biosensor had good practicability in mouse serum. The results of gel electrophoresis further demonstrated that C-1 (C-9) could effectively intercalated into ctDNA and disrupt plasmid conformation. Finally, anthraquinone-TMZ hybrid C-1 possessed high cytotoxicity toward A549 and GL261 cells, which could be a novel and optimal candidate for the clinic antitumor treatment.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Fei-Fei Guo
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xi-Ping Mu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Ping Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xue Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhi-Hao Xu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| |
Collapse
|
4
|
Ragab MS, Soliman MH, Shehata MR, Shoukry MM, Ragheb MA. Design, synthesis, spectral characterization, photo‐cleavage and
in vitro
evaluation of anticancer activities of new transition metal complexes of piperazine based Schiff base‐oxime ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mona S. Ragab
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Marwa H. Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| | | | | | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
5
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Cortes Vazquez J, Davis J, Nesterov VN, Wang H, Luo W. Sc(OTf) 3-Catalyzed Formal [3 + 3] Cycloaddition Reaction of Diaziridines and Quinones for the Synthesis of Benzo[ e][1,3,4]oxadiazines. Org Lett 2021; 23:3136-3140. [PMID: 33819425 DOI: 10.1021/acs.orglett.1c00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A formal [3 + 3] cyclization reaction of diaziridines and quinones has been developed offering 1,3,4-oxadiazinanes in generally high yields (up to 96%). The reaction was catalyzed by Sc(OTf)3 with a large substrate scope for both diaziridines and quinones. The synergistic activation of 1,3-dipolar diaziridines and the dipolar quinones was found to be essential to enable this reaction.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Weiwei Luo
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
8
|
Zheng T, Yuan D, Liu C. Molecular toxicity of nanoplastics involving in oxidative stress and desoxyribonucleic acid damage. J Mol Recognit 2019; 32:e2804. [PMID: 31373076 DOI: 10.1002/jmr.2804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Microplastic pollution attracted extensive attention because of its global presence and adverse effects on ecosystem. However, it is insufficient to clear the effects of nanoplastics on organisms at the molecular level. Herein, a nanopolystyrene (50 nm) was used to examine molecular responses of superoxide dismutase (SOD) and desoxyribonucleic acid (DNA) using spectroscopy (UV-vis, circular dichroism spectra, and fluorescence measurements) and single cell gel electrophoresis methods. Results showed that nanopolystyrene induced oxidative stress, involving in the increase of SOD activity and malondialdehide (MDA) content, and DNA damage because of the significant increase of olive tail moment, head optical density, and tail DNA percentage in the groups at exposure concentrations above 5 × 10-6 mol/L. The second structural and microenvironment of aromatic amino acids of SOD were changed with nanopolystyrene exposure. The fluorescence of SOD was quenched by nanopolystyrene at exposure concentration above 1 × 10-5 mol/L, and the quenching mode could be ascribed to the static type. The results and the combined methods are favorable to explore the molecular toxicity of other nanoplastics and the interaction mechanism.
Collapse
Affiliation(s)
- Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse,, China-America CRC for Environment and Health of Shandong Province, Shandong University, Qingdao, China
| | - Dong Yuan
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse,, China-America CRC for Environment and Health of Shandong Province, Shandong University, Qingdao, China.,Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
DNA binding, artificial nuclease activity and cytotoxic studies of newly synthesized steroidal pyrimidines. Int J Biol Macromol 2017; 111:52-61. [PMID: 29292141 DOI: 10.1016/j.ijbiomac.2017.12.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/09/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023]
Abstract
The new steroidal pyrimidine derivatives (4-6) were synthesized by the reaction of steroidal thiosemicarbazones with (2-methyl) diethyl malonate in absolute ethanol. After characterization by spectral and analytical data, the DNA interaction studies of compounds (4-6) were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31×103M-1, 1.93×103M-1 and 2.05×103M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed a strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of steroidal pyrimidine moiety in the minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). During DAPI staining, the nuclear fragmentations on cells occurred after treatment with compounds 4 and 5. Western blotting analysis clearly indicates that compound 4 causes apoptosis in MCF-7 cancer cells. The results revealed that compound 4 has better prospectus to act as a cancer chemotherapeutic candidate, which warrants further in vivo anticancer investigations.
Collapse
|
10
|
Tantawy MA, Nafie MS, Elmegeed GA, Ali IA. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg Chem 2017; 73:128-146. [DOI: 10.1016/j.bioorg.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 01/20/2023]
|
11
|
Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. Int J Biol Macromol 2017; 96:223-233. [DOI: 10.1016/j.ijbiomac.2016.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
12
|
Dar AM, Uzzaman S, Ahmad MS, Khan Y. Steroidal imidazoles: Synthesis, characterization, molecular docking studies with DNA and in vitro cytotoxicity. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Spectroscopic, Viscositic, DNA Binding and Cytotoxic Studies of Newly Synthesized Steroidal Imidazolidines. J Fluoresc 2015; 26:639-49. [DOI: 10.1007/s10895-015-1750-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
14
|
Dar AM, Gatoo MA, Ahmad A, Ahmad MS, Najar MH, Shamsuzzaman. DNA Interaction Studies and In Vitro Cytotoxicity of Newly Synthesized Steroidal Imidazolidinones. J Fluoresc 2015; 25:1377-87. [PMID: 26245453 DOI: 10.1007/s10895-015-1628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
New steroidal imidazolidinone derivatives (7-9) were synthesized after reacting steroidal thiosemicarbazones with oxalyl chloride in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (7-9) with DNA were carried out by UV-vis, fluorescence spectroscopy, circular dichroism, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31 × 10(4) M(-1), 2.57 × 10(4) M(-1) and 2.16 × 10(4) M(-1), respectively indicating the higher binding affinity of compound 8 towards DNA. Gel electrophoresis demonstrated that the compounds 7-9 show strong interaction during the cleavage activity with pBR322 DNA. The docking study suggested the intercalation of imidazolidinone moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds 7-9 revealed potential toxicity against the different human cancer cells (MTT assay). Apoptotic degradation of DNA in presence of compounds 7-9 was analyzed by agarose gel electrophoresis and visualized by ethidium bromide staining (comet assay). FACS analysis shows that the compound 8 bring about cell cycle arrest at 7 μM concentration.
Collapse
Affiliation(s)
- Ayaz Mahmood Dar
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202 002, India. .,Department of Chemistry, Government Degree College, Kulgam Kashmir, 192231, J&K, India.
| | - Manzoor Ahmad Gatoo
- Department of Biochemistry, Jawaharlal Nehru Medical College Aligarh Muslim University, Aligarh, 202 002, India
| | - Ajaz Ahmad
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202 002, India
| | - Mir Shabeer Ahmad
- Department of Chemistry, Government Degree College, Kulgam Kashmir, 192231, J&K, India
| | | | - Shamsuzzaman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202 002, India
| |
Collapse
|