1
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Liu X, Cai F, Zhang Y, Luo X, Yuan L, Ma H, Yang M, Ge F. Interactome Analysis of ClpX Reveals Its Regulatory Role in Metabolism and Photosynthesis in Cyanobacteria. J Proteome Res 2024; 23:1174-1187. [PMID: 38427982 DOI: 10.1021/acs.jproteome.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.
Collapse
Affiliation(s)
- Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fangfang Cai
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Department of Basic Research, Research-And-Development Center, Sinopharm Animal Health Corporation Ltd., Wuhan 430074, China
| | - Xuan Luo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyan Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Bernegger S, Hutterer E, Zarzecka U, Schmidt TP, Huemer M, Widlroither I, Posselt G, Skorko-Glonek J, Wessler S. E-Cadherin Orthologues as Substrates for the Serine Protease High Temperature Requirement A (HtrA). Biomolecules 2022; 12:356. [PMID: 35327548 PMCID: PMC8945801 DOI: 10.3390/biom12030356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Helicobacter pylori (H. pylori) expresses the serine protease and chaperone High temperature requirement A (HtrA) that is involved in periplasmic unfolded protein stress response. Additionally, H. pylori-secreted HtrA directly cleaves the human cell adhesion molecule E-cadherin leading to a local disruption of intercellular adhesions during pathogenesis. HtrA-mediated E-cadherin cleavage has been observed in response to a broad range of pathogens, implying that it is a prevalent mechanism in humans. However, less is known whether E-cadherin orthologues serve as substrates for bacterial HtrA. Here, we compared HtrA-mediated cleavage of human E-cadherin with murine, canine, and simian E-cadherin in vitro and during bacterial infection. We found that HtrA targeted mouse and dog E-cadherin equally well, whereas macaque E-cadherin was less fragmented in vitro. We stably re-expressed orthologous E-cadherin (Cdh1) in a CRISPR/Cas9-mediated cdh1 knockout cell line to investigate E-cadherin shedding upon infection using H. pylori wildtype, an isogenic htrA deletion mutant, or complemented mutants as bacterial paradigms. In Western blot analyses and super-resolution microscopy, we demonstrated that H. pylori efficiently cleaved E-cadherin orthologues in an HtrA-dependent manner. These data extend previous knowledge to HtrA-mediated E-cadherin release in mammals, which may shed new light on bacterial infections in non-human organisms.
Collapse
Affiliation(s)
- Sabine Bernegger
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Evelyn Hutterer
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland; (U.Z.); (J.S.-G.)
| | - Thomas P. Schmidt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Markus Huemer
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Isabella Widlroither
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland; (U.Z.); (J.S.-G.)
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
- Cancer Cluster Salzburg and Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
5
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
6
|
Chen Z, Li X, Tan X, Zhang Y, Wang B. Recent Advances in Biological Functions of Thick Pili in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:241. [PMID: 32210999 PMCID: PMC7076178 DOI: 10.3389/fpls.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
Cyanobacteria have evolved various strategies to sense and adapt to biotic and abiotic stresses including active movement. Motility in cyanobacteria utilizing the type IV pili (TFP) is useful to cope with changing environmental conditions. The model cyanobacterium Synechocystis sp. PCC 6803 (hereafter named Synechocystis) exhibits motility via TFP called thick pili, and uses it to seek out favorable light/nutrition or escape from unfavorable conditions. Recently, a number of studies on Synechocystis thick pili have been undertaken. Molecular approaches support the role of the pilin in motility, cell adhesion, metal utilization, and natural competence in Synechocystis. This review summarizes the most recent studies on the function of thick pili as well as their formation and regulation in this cyanobacterium.
Collapse
Affiliation(s)
- Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xitong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Flores C, Santos M, Pereira SB, Mota R, Rossi F, De Philippis R, Couto N, Karunakaran E, Wright PC, Oliveira P, Tamagnini P. The alternative sigma factor SigF is a key player in the control of secretion mechanisms inSynechocystissp. PCC 6803. Environ Microbiol 2018; 21:343-359. [DOI: 10.1111/1462-2920.14465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Flores
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Marina Santos
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Sara B. Pereira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Rita Mota
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Federico Rossi
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Narciso Couto
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Paulo Oliveira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Paula Tamagnini
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Faculdade de Ciências, Departamento de Biologia; Universidade do Porto; Porto Portugal
| |
Collapse
|
8
|
The HhoA protease from Synechocystis sp. PCC 6803 – Novel insights into structure and activity regulation. J Struct Biol 2017; 198:147-153. [DOI: 10.1016/j.jsb.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022]
|
9
|
Dong W, Wang J, Niu G, Zhao S, Liu L. Crystal structure of the zinc-bound HhoA protease from Synechocystis sp. PCC 6803. FEBS Lett 2016; 590:3435-3442. [PMID: 27616292 DOI: 10.1002/1873-3468.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022]
Abstract
The high temperature requirement A (HtrA) proteases are oligomeric serine proteases essential for protein quality control. HtrA homolog A (HhoA) from the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 assembles into a proteolytically active hexamer. Herein, we present the crystal structure of the hexameric HhoA in complex with the copurified peptide. Our data indicate the presence of three methionines in close proximity to the peptide-binding site of the PDZ domain. Unexpectedly, we observed that a zinc ion is accommodated within the central channel formed by a HhoA trimer. However, neither calcium nor magnesium showed affinity for HhoA. The role of the zinc ion in HhoA was tested in an in vitro proteolytic assay against the nonspecific substrate β-casein and was found to be inhibitory. Our findings provide insights into the regulation of HhoA by a redox-related mechanism involving methionine residues and by zinc ion-binding within the central channel.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Wang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoqi Niu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shun Zhao
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Giner-Lamia J, Pereira SB, Bovea-Marco M, Futschik ME, Tamagnini P, Oliveira P. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria? Front Microbiol 2016; 7:878. [PMID: 27375598 PMCID: PMC4894872 DOI: 10.3389/fmicb.2016.00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.
Collapse
Affiliation(s)
- Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Sara B Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | | | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, Centro de Ciências do Mar, Universidade do AlgarveFaro, Portugal; Center for Biomedical Research, Universidade do AlgarveFaro, Portugal
| | - Paula Tamagnini
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do PortoPorto, Portugal
| | - Paulo Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
11
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
12
|
Oliveira P, Martins NM, Santos M, Pinto F, Büttel Z, Couto NAS, Wright PC, Tamagnini P. The versatile TolC-like Slr1270 in the cyanobacteriumSynechocystissp. PCC 6803. Environ Microbiol 2016; 18:486-502. [DOI: 10.1111/1462-2920.13172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Nuno M. Martins
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Zsófia Büttel
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Narciso A. S. Couto
- ChELSI Institute; Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- ChELSI Institute; Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| |
Collapse
|
13
|
Cheregi O, Funk C. Antibiotic Disc Assay for Synechocystis sp. PCC6803. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|