1
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Markandan K, Chai WS. Perspectives on Nanomaterials and Nanotechnology for Sustainable Bioenergy Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7769. [PMID: 36363361 PMCID: PMC9658981 DOI: 10.3390/ma15217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The issue of global warming calls for a greener energy production approach. To this end, bioenergy has significant greenhouse gas mitigation potential, since it makes use of biological products/wastes and can efficiently counter carbon dioxide emission. However, technologies for biomass processing remain limited due to the structure of biomass and difficulties such as high processing cost, development of harmful inhibitors and detoxification of produced inhibitors that hinder widespread usage. Additionally, cellulose pre-treatment is often required to be amenable for an enzymatic hydrolysis process. Nanotechnology (usage of nanomaterials, in this case) has been employed in recent years to improve bioenergy generation, especially in terms of catalyst and feedstock modification. This review starts with introducing the potential nanomaterials in bioenergy generation such as carbon nanotubes, metal oxides, silica and other novel materials. The role of nanotechnology to assist in bioenergy generation is discussed, particularly from the aspects of enzyme immobilization, biogas production and biohydrogen production. Future applications using nanotechnology to assist in bioenergy generation are also prospected.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
3
|
Wang K, Paszkiewicz O, Vincent M, Henkiel P, Kowalski D, Kowalska E, Markowska-Szczupak A. Evaluation of Antifungal Properties of Titania P25. MICROMACHINES 2022; 13:1851. [PMID: 36363871 PMCID: PMC9693362 DOI: 10.3390/mi13111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Commercial titania photocatalyst—P25 was chosen for an antifungal property examination due to it exhibiting one of the highest photocatalytic activities among titania photocatalysts. Titania P25 was homogenized first (HomoP25) and then annealed at different temperatures. Additionally, HomoP25 was modified with 0.5 wt% or 2.0 wt% of platinum by a photodeposition method. The obtained samples were characterized by diffuse-reflectance spectroscopy (DRS), X-ray photoabsorption spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy. Moreover, photocatalytic activity was tested for methanol dehydrogenation under UV/vis irradiation. The spore-destroying effect of photocatalysts was investigated against two mold fungal species, i.e., Aspergillus fumigatus and Aspergillus niger. Both the mycelium growth and API ZYM (estimation of enzymatic activity) tests were applied for the assessment of antifungal effect. It was found that annealing caused a change of surface properties of the titania samples, i.e., an increase in the noncrystalline part, a growth of particles and enhanced oxygen adsorption on its surface, which resulted in an increase in both the hydrogen evolution rate and the antifungal effect. Titania samples annealed at 300−500 °C were highly active during 60-min UV/vis irradiation, inhibiting the germination of both fungal spores, whereas titania modification with platinum (0.5 and 2.0 wt%) had negligible effect, despite being highly active for hydrogen evolution. The control experiments revealed the lack of titania activity in the dark, as well as high resistance of fungi for applied UV/vis irradiation in the absence of photocatalysts. Moreover, the complete inhibition of 19 hydrolases, secreted by both tested fungi, was noted under UV/vis irradiation on the annealed P25 sample. It is proposed that titania photocatalysts of large particle sizes (>150 nm) and enriched surface with oxygen might efficiently destroy fungal structures under mild irradiation conditions and, thus, be highly promising as covering materials for daily products.
Collapse
Affiliation(s)
- Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Mewin Vincent
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patrycja Henkiel
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Kowalski
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| |
Collapse
|
4
|
Abstract
Decahedral anatase particles (DAPs) have been prepared by the gas-phase method, characterized, and analyzed for property-governed photocatalytic activity. It has been found that depending on the reaction systems, different properties control the photocatalytic activity, that is, the particle aspect ratio, the density of electron traps and the morphology seem to be responsible for the efficiency of water oxidation, methanol dehydrogenation and oxidative decomposition of acetic acid, respectively. For the discussion on the dependence of the photocatalytic activity on the morphology and/or the symmetry other titania-based photocatalysts have also been analyzed, that is, octahedral anatase particles (OAP), commercial titania P25, inverse opal titania with and without incorporated gold NPs in void spaces and plasmonic photocatalysts (titania with deposits of gold). It has been concluded that though the morphology governs photocatalytic activity, the symmetry (despite its importance in many cases) rather does not control the photocatalytic performance.
Collapse
|
5
|
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment and pure water. This review presents recent developments of graphene-based semiconductor photocatalysts, including novel composites with faceted particles, photonic crystals, and nanotubes/nanowires, where the enhancement of activity mechanism is associated with a synergistic effect resulting from the presence of graphene structure. Moreover, antimicrobial potential (highly needed these days), and facile recovery/reuse of photocatalysts by magnetic field have been addresses as very important issue for future commercialization. It is believed that graphene materials should be available soon in the market, especially because of constantly decreasing prices of graphene, vis response, excellent charge transfer ability, and thus high and broad photocatalytic activity against both organic pollutants and microorganisms.
Collapse
|
6
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
7
|
Vis-Responsive Copper-Modified Titania for Decomposition of Organic Compounds and Microorganisms. Catalysts 2020. [DOI: 10.3390/catal10101194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Seven commercial titania (titanium(IV) oxide; TiO2) powders with different structural properties and crystalline compositions (anatase/rutile) were modified with copper by two variants of a photodeposition method, i.e., methanol dehydrogenation and water oxidation. The samples were characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Although zero-valent copper was deposited on the surface of titania, oxidized forms of copper, post-formed in ambient conditions, were also detected in dried samples. All samples could absorb visible light (vis), due to localized surface plasmon resonance (LSPR) of zero-valent copper and by other copper species, including Cu2O, CuO and CuxO (x:1-2). The photocatalytic activities of samples were investigated under both ultraviolet (UV) and visible light irradiation (>450 nm) for oxidative decomposition of acetic acid. It was found that titania modification with copper significantly enhanced the photocatalytic activity, especially for anatase samples. The prolonged irradiation (from 1 to 5 h) during samples’ preparation resulted in aggregation of copper deposits, thus being detrimental for vis activity. It is proposed that oxidized forms of copper are more active under vis irradiation than plasmonic one. Antimicrobial properties against bacteria (Escherichia coli) and fungi (Aspergillus niger) under vis irradiation and in the dark confirmed that Cu/TiO2 exhibits a high antibacterial effect, mainly due to the intrinsic activity of copper species.
Collapse
|
8
|
The great performance of TiO2 nanotubes electrodes modified by copper(II)porphyrin in the reduction of carbon dioxide to alcohol. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Wide-bandgap semiconductors modified with nanostructures of noble metals for photocatalytic activity under vis irradiation due to localized surface plasmon resonance (LSPR), known as plasmonic photocatalysts, have been intensively investigated over the last decade. Most literature reports discuss the properties and activities of plasmonic photocatalysts for the decomposition of organic compounds and solar energy conversion. Although noble metals, especially silver and copper, have been known since ancient times as excellent antimicrobial agents, there are only limited studies on plasmonic photocatalysts for the inactivation of microorganisms (considering vis-excitation). Accordingly, this review has discussed the available literature reports on microbiological applications of plasmonic photocatalysis, including antibacterial, antiviral and antifungal properties, and also a novel study on other microbiological purposes, such as cancer treatment and drug delivery. Although some reports indicate high antimicrobial properties of these photocatalysts and their potential for medical/pharmaceutical applications, there is still a lack of comprehensive studies on the mechanism of their interactions with microbiological samples. Moreover, contradictory data have also been published, and thus more study is necessary for the final conclusions on the key-factor properties and the mechanisms of inactivation of microorganisms and the treatment of cancer cells.
Collapse
|
10
|
Abstract
Cosmetics and other daily care products contain titanium(IV) oxide (titania). Since multiple risk factors can increase the chance of developing cancer, an evaluation of titania safety has become a matter of concern in recent times. However, it should be pointed out that titania as an efficient photocatalyst has been also applied for inactivation of various pathogens, environmental purification and energy conversion, which might result in significant improvement of human life. Therefore, it is worth considering titania not only as a possible cancer initiator, but also as an efficient solution against cancer cells. Accordingly, in this study, the effect of commercial titania photocatalyst P25 (Degussa/Evonik) on breast adenocarcinoma MCF7 cells (ATCC® HTB-22™, breast adenocarcinoma cell line from human) has been investigated. The cells were treated with titania at doses of 10, 30, and 50 µg/mL under UVA/vis irradiation and in the dark. The significant morphological alterations in living cells were observed for larger doses of titania, such as changes in the shape and the size of cells, the deviation from the normal structure, and an increase in cells’ mortality. Moreover, the effect was significantly higher under irradiation than in the dark confirming strong photocatalytic activity of titania P25. In contrast, the lowest dose of titania (10 µg/mL) did not exhibit a significant impact on MCF7 cells, similarly to the nontreated cells. Accordingly, it has been proposed that locally applied titania might be considered for a cancer therapy after necessary in vivo tests to estimate any possibilities of side effects.
Collapse
|
11
|
Carbon/Graphene-Modified Titania with Enhanced Photocatalytic Activity under UV and Vis Irradiation. MATERIALS 2019; 12:ma12244158. [PMID: 31835760 PMCID: PMC6947090 DOI: 10.3390/ma12244158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022]
Abstract
Laser synthesis was used for one-step synthesis of titania/graphene composites (G-TiO2 (C)) from a suspension of 0.04 wt% commercial reduced graphene oxide (rGO) dispersed in liquid titanium tetraisopropoxide (TTIP). Reference titania sample (TiO2(C)) was prepared by the same method without graphene addition. Both samples and commercial titania P25 were characterized by various methods and tested under UV/vis irradiation for oxidative decomposition of acetic acid and dehydrogenation of methanol (with and without Pt co-catalyst addition), and under vis irradiation for phenol degradation and inactivation of Escherichia coli. It was found that both samples (TiO2(C) and G-TiO2(C)) contained carbon resulting from TTIP and C2H4 (used as a synthesis sensitizer), which activated titania towards vis activity. The photocatalytic activity under UV/vis irradiation was like that by P25. The highest activity of TiO2(C) sample for acetic acid oxidation was probably caused by its surface enrichment with hydroxyl groups. G-TiO2(C) was the most active for methanol dehydrogenation in the absence of platinum (ca. five times higher activity than that by TiO2(C) and P25), suggesting that graphene works as a co-catalyst for hydrogen evolution. High activity under both UV and vis irradiation for decomposition of organic compounds, hydrogen evolution and inactivation of bacteria suggests that laser synthesis allows preparation of cheap (carbon-modified) and efficient photocatalysts for broad environmental applications.
Collapse
|
12
|
Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective. Catalysts 2019. [DOI: 10.3390/catal9121054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive, and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications, e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania (anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional properties, including easy separation in the magnetic field, high activity, and mechanism clarification, respectively. Although anatase has been usually thought as the most active phase of titania, the co-existence of other crystalline phases accelerates the photocatalytic activity significantly, and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation and reduction reactions. It is believed that this review might be useful for the architecture design of novel nanomaterials for broad and diverse applications, including environmental purification, energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging, and antiseptic properties.
Collapse
|
13
|
Wysocka I, Markowska-Szczupak A, Szweda P, Ryl J, Endo-Kimura M, Kowalska E, Nowaczyk G, Zielińska-Jurek A. Gas-phase removal of indoor volatile organic compounds and airborne microorganisms over mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide nanocomposites. INDOOR AIR 2019; 29:979-992. [PMID: 31469187 DOI: 10.1111/ina.12595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono- and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV-Vis, BET, and TEM analysis. The effect of incident light, type and content of mono- and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as-prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt-TiO2 and Cu/Pt-TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water-damaged building using mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono- and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2 .
Collapse
Affiliation(s)
- Izabela Wysocka
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| | - Agata Markowska-Szczupak
- Institute of Inorganic Chemical Technology and Environmental Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Piotr Szweda
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Ryl
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| | - Maya Endo-Kimura
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | | | - Anna Zielińska-Jurek
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
14
|
Méndez-Medrano MG, Kowalska E, Endo-Kimura M, Wang K, Ohtani B, Bahena Uribe D, Rodríguez-López JL, Remita H. Inhibition of Fungal Growth Using Modified TiO2 with Core@Shell Structure of Ag@CuO Clusters. ACS APPLIED BIO MATERIALS 2019; 2:5626-5633. [DOI: 10.1021/acsabm.9b00707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Guadalupe Méndez-Medrano
- Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
- Advanced Materials Department, IPICYT, 78216 San Luis Potosi, SLP, Mexico
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Kunlei Wang
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Daniel Bahena Uribe
- Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico City, DF, Mexico
| | | | - Hynd Remita
- Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
- CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
15
|
Abstract
Nanomaterials, engineered structures of which a single unit is sized (in at least one dimension) between 1 to 100 nm, are probably the fastest growing market in the world [...]
Collapse
|
16
|
Abstract
Ag2O/TiO2 heterojunctions were prepared by a simple method, i.e., the grinding of argentous oxide with six different titania photocatalysts. The physicochemical properties of the obtained photocatalysts were characterized by diffuse-reflectance spectroscopy (DRS), X-ray powder diffraction (XRD) and scanning transmission electron microscopy (STEM) with an energy dispersive X-ray spectroscopy (EDS). The photocatalytic activity was investigated for the oxidative decomposition of acetic acid and methanol dehydrogenation under UV/vis irradiation and for the oxidative decomposition of phenol and 2-propanol under vis irradiation. Antimicrobial properties were tested for bacteria (Escherichia coli) and fungi (Candida albicans and Penicillium chrysogenum) under UV and vis irradiation and in the dark. Enhanced activity was observed under UV/vis (with synergism for fine anatase-containing samples) and vis irradiation for almost all samples. This suggests a hindered recombination of charge carriers by p-n heterojunction or Z-scheme mechanisms under UV irradiation and photo-excited electron transfer from Ag2O to TiO2 under vis irradiation. Improved antimicrobial properties were achieved, especially under vis irradiation, probably due to electrostatic attractions between the negative surface of microorganisms and the positively charged Ag2O.
Collapse
|
17
|
Annealing Control on the Anatase/Rutile Ratio of Nanostructured Titanium Dioxide Obtained by Sol-Gel. CRYSTALS 2018. [DOI: 10.3390/cryst9010022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to the different phases at which titanium dioxide (TiO2) crystallizes, previous studies have shown that anatase is more efficient for photocatalysis than rutile. Nowadays, the synergetic effect is well-accepted between anatase and rutile as having an effect in increasing performance in photocatalysis. In the present work, control over the anatase/rutile ratio was performed in three experimental steps. Initially, amorphous-anatase TiO2 powders were synthesized by the sol-gel method. For the crystallization of anatase, the powders were annealed at 250 °C for 2 h in ambient atmosphere. The final step was performed by using different annealing times, ranging from 35 up to 200 min at a temperature of 475 °C. The powders were characterized by Raman spectroscopy, UV–VIS, SEM and TEM techniques to determine the crystalline phase, band gap, morphology, and elemental composition, respectively. It was possible to control the anatase/rutile ratio on the nanostructured TiO2 powders from 100% of anatase until a complete transformation to rutile through the variation of the annealing time. The band gap calculated using the Tauc’s model was found in the range of 2.56 to 2.93 eV. However, no direct relationship between the anatase/rutile ratio, and the band gap was found.
Collapse
|
18
|
Rodrigues-Silva C, Monteiro RAR, Dezotti M, Silva AMT, Pinto E, Boaventura RAR, Vilar VJP. A facile method to prepare translucent anatase thin films in monolithic structures for gas stream purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27796-27807. [PMID: 29696544 DOI: 10.1007/s11356-018-2008-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
In the present work, a facile method to prepare translucent anatase thin films on cellulose acetate monolithic (CAM) structures was developed. A simple sol-gel method was applied to synthesize photoactive TiO2 anatase nanoparticles using tetra-n-butyl titanium as precursor. The immobilization of the photocatalyst on CAM structures was performed by a simple dip-coating method. The translucent anatase thin films allow the UV light penetration through the CAM internal walls. The photocatalytic activity was tested on the degradation of n-decane (model volatile organic compound-VOC) in gas phase, using a tubular lab-scale (irradiated by simulated solar light) and pilot-scale (irradiated by natural solar light or UVA light) reactors packed with TiO2-CAM structures, both equipped with compound parabolic collectors (CPCs). The efficiency of the photocatalytic oxidation (PCO) process in the degradation of n-decane molecules was studied at different operating conditions at lab-scale, such as catalytic bed size (40-160 cm), TiO2 film thickness (0.435-0.869 μm), feed flow rate (75-300 cm3 min-1), n-decane feed concentration (44-194 ppm), humidity (3 and 40%), oxygen concentration (0 and 21%), and incident UV irradiance (18.9, 29.1, and 38.4 WUV m-2). The decontamination of a bioaerosol stream was also evaluated by the PCO process, using Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) as model bacteria. A pilot-scale unit was operated day and night, using natural sunlight and artificial UV light, to show its performance in the mineralization of n-decane air streams under real outdoor conditions. Graphical abstract Normally graphics abstract are not presented with captions/legend. The diagram is a collection of images that resume the work.
Collapse
Affiliation(s)
- Caio Rodrigues-Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| | - Ricardo A R Monteiro
- LEPABE - Laboratory for Process, Environment, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Márcia Dezotti
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, P.O. Box 68 502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, No. 228, 4050-313, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
19
|
Perini JAL, Cardoso JC, Brito JFD, Zanoni MVB. Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang K, Wei Z, Ohtani B, Kowalska E. Interparticle electron transfer in methanol dehydrogenation on platinum-loaded titania particles prepared from P25. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
TiO2 and its composites as promising biomaterials: a review. Biometals 2018; 31:147-159. [DOI: 10.1007/s10534-018-0078-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
|
22
|
Wysocka I, Kowalska E, Trzciński K, Łapiński M, Nowaczyk G, Zielińska-Jurek A. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles. NANOMATERIALS 2018; 8:nano8010028. [PMID: 29316667 PMCID: PMC5791115 DOI: 10.3390/nano8010028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/25/2022]
Abstract
The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), Mott-Schottky analysis and photoluminescence spectroscopy (PL). Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation). It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process.
Collapse
Affiliation(s)
- Izabela Wysocka
- Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo 001-0021, Japan.
| | - Konrad Trzciński
- Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Marcin Łapiński
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Grzegorz Nowaczyk
- NanoBioMedical Center, Adam Mickiewicz University, 61-614 Poznan, Poland.
| | | |
Collapse
|
23
|
Zheng S, Wei Z, Yoshiiri K, Braumüller M, Ohtani B, Rau S, Kowalska E. Titania modification with a ruthenium(ii) complex and gold nanoparticles for photocatalytic degradation of organic compounds. Photochem Photobiol Sci 2016; 15:69-79. [DOI: 10.1039/c5pp00345h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interaction between two kinds of titania modifiers, i.e., a ruthenium complex and gold nanoparticles, influenced the resultant properties and photocatalytic activities of hybrid photocatalysts under UV and/or vis light irradiation.
Collapse
Affiliation(s)
- Shuaizhi Zheng
- Institute for Catalysis
- Hokkaido University
- 001-0021 Sapporo
- Japan
- Institute of Inorganic Chemistry 1
| | - Zhishun Wei
- Institute for Catalysis
- Hokkaido University
- 001-0021 Sapporo
- Japan
| | - Kenta Yoshiiri
- Institute for Catalysis
- Hokkaido University
- 001-0021 Sapporo
- Japan
- Graduate School of Environmental Science
| | | | - Bunsho Ohtani
- Institute for Catalysis
- Hokkaido University
- 001-0021 Sapporo
- Japan
- Graduate School of Environmental Science
| | - Sven Rau
- Institute of Inorganic Chemistry 1
- Ulm University
- 89081 Ulm
- Germany
| | - Ewa Kowalska
- Institute for Catalysis
- Hokkaido University
- 001-0021 Sapporo
- Japan
- Graduate School of Environmental Science
| |
Collapse
|