1
|
Utschig LM, Mulfort KL. Photosynthetic biohybrid systems for solar fuels catalysis. Chem Commun (Camb) 2024; 60:10642-10654. [PMID: 39229971 DOI: 10.1039/d4cc00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photosynthetic reaction center (RC) proteins are finely tuned molecular systems optimized for solar energy conversion. RCs effectively capture and convert sunlight with near unity quantum efficiency utilizing light-induced directional electron transfer through a series of molecular cofactors embedded within the protein core to generate a long-lived charge separated state with a useable electrochemical potential. Of current interest are new strategies that couple RC chemistry to the direct synthesis of energy-rich compounds. This Feature Article highlights recent work from our lab on RC and RC-inspired hybrid systems that capture the Sun's energy and convert it to chemical energy in the form of H2, a carbon-neutral energy source derived from water. Biohybrids made from the Photosystem I (PSI) RC are among the best photocatalytic H2-producing protein hybrids to date. Targeted self-assembly strategies that couple abiotic catalysts to PSI translate to catalyst incorporation at intrinsic PSI sites within thylakoid membranes to achieve complete solar water-splitting systems. RC-inspired biohybrids interface synthetic photosensitizers and molecular catalysts with small proteins to create photocatalytic systems and enable the spectroscopic discernment of the structural features and electron transfer processes that underpin solar-driven proton reduction. In total, these studies showcase the incredible scientific opportunities photosynthetic biohybrid research provides for harnessing the optimal qualities of both artificial and natural photosynthetic systems and developing materials that capture, convert, and store solar energy as a fuel.
Collapse
Affiliation(s)
- Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
2
|
Rumbaugh TD, Gorka MJ, Baker CS, Golbeck JH, Silakov A. Light-induced H 2 generation in a photosystem I-O 2-tolerant [FeFe] hydrogenase nanoconstruct. Proc Natl Acad Sci U S A 2024; 121:e2400267121. [PMID: 39136990 PMCID: PMC11348241 DOI: 10.1073/pnas.2400267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/29/2024] [Indexed: 08/15/2024] Open
Abstract
The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.
Collapse
Affiliation(s)
- Tristen D Rumbaugh
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Michael J Gorka
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
3
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Gorka M, Golbeck JH. Generating dihydrogen by tethering an [FeFe]hydrogenase via a molecular wire to the A 1A/A 1B sites of photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 143:155-163. [PMID: 31673863 DOI: 10.1007/s11120-019-00685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Photosystem I complexes from the menB deletion mutant of Synechocystis sp. PCC 6803 were previously wired to a Pt nanoparticle via a molecular wire consisting of 15-(3-methyl-1,4-naphthoquinone-2-yl)]pentadecyl sulfide. In the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-Pt nanoconstruct generated dihydrogen at a rate of 44.3 µmol of H2 mg Chl-1 h-1 during illumination at pH 8.3. The menB deletion strain contains an interruption in the biosynthetic pathway of phylloquinone, which results in the presence of a displaceable plastoquinone-9 in the A1A/A1B sites. The synthesized quinone contains a headgroup identical to the native phylloquinone along with a 15-carbon long tail that is terminated in a thiol. The thiol on the molecular wire is used to bind the Pt nanoparticle. In this short communication, we replaced the Pt nanoparticle with an [FeFe]H2ase variant from Clostridium acetobutylicum that contains an exposed iron on the distal [4Fe-4S] cluster afforded by mutating the surface exposed Cys97 residue to Gly. The thiol on the molecular wire is then used to coordinate the corner iron atom of the iron-sulfur cluster. When all three components are combined and illuminated in the presence of a sacrificial electron donor and an electron transport mediator, the PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct generated dihydrogen at a rate of 50.3 ± 9.96 μmol of H2 mg Chl-1 h-1 during illumination at pH 8.3. This successful in vitro experiment sets the stage for assembling a PS I-NQ(CH2)15S-[FeFe]H2ase nanoconstruct in vivo in the menB mutant of Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S328 Frear Building, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Miyachi M, Okuzono K, Nishiori D, Yamanoi Y, Tomo T, Iwai M, Allakhverdiev SI, Nishihara H. A Photochemical Hydrogen Evolution System Combining Cyanobacterial Photosystem I and Platinum Nanoparticle-terminated Molecular Wires. CHEM LETT 2017. [DOI: 10.1246/cl.170576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariko Miyachi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Kyoko Okuzono
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Daiki Nishiori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
6
|
Makita H, Hastings G. Modeling electron transfer in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:723-33. [DOI: 10.1016/j.bbabio.2016.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
|