1
|
Gunasekaran JX, Yadav RM, Ramachandran P, Sharma S, Subramanyam R. Mild osmotic stress offers photoprotection in Chlamydomonas reinhardtii under high light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109050. [PMID: 39366200 DOI: 10.1016/j.plaphy.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/06/2024]
Abstract
The exposure of autotrophs to high light intensities significantly impacts their photosynthetic performance. When combined with unpredictable climate changes, the lethality of these effects is exacerbated and, often surpassing the organisms' threshold for tolerance. In this regard, our study centres on examining the mitigating effects of mild osmotic stress induced by 2% Polyethylene Glycol (PEG) in conjunction with high-light conditions, using Chlamydomonas reinhardtii as a model system. Cells were cultivated under low PEG-induced osmotic stress at various light intensities, and their responses were analyzed through biochemical and biophysical approaches. Remarkably, cells grown under lower PEG concentrations exhibited superior growth, increased biomass, and enhanced photosynthetic efficiency under high light compared to non-PEG-treated cells. Surprisingly, their non-photochemical quenching (NPQ) levels were lower, indicating the operation of a distinct photoprotective mechanism in PEG-grown samples. The PEG-grown cells demonstrated higher chlorophyll content but lower carotenoid content, supporting the NPQ data. Circular dichroism analysis suggested that the macro-organization of super-complexes was minimally disrupted in PEG-grown samples, even under high light. This was further supported by Blue native PAGE, which showed greater stability of the super-complexes in PEG-grown cells, implying heightened stability in pigment-protein interactions. Immunoblot analysis revealed minimal differences in core reaction center proteins between PEG-grown and non-PEG cells. Notably, this protective mechanism was absent in the cell wall-deficient mutant CC503. We propose that the partial photoprotection observed is attributed to the PEG shielding the cell wall. This result holds promise for enhancing algal biomass production under natural environmental conditions influenced by fluctuating light intensity.
Collapse
Affiliation(s)
- Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shriya Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Ravi Kiran B, Singh P, Kuravi SD, Mohanty K, Venkata Mohan S. Modulating cultivation regimes of Messastrum gracile SVMIICT7 for biomass productivity integrated with resource recovery via hydrothermal liquefaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120458. [PMID: 38479286 DOI: 10.1016/j.jenvman.2024.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India
| | - Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sri Divya Kuravi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Tomar R, Atre R, Sharma D, Rai-Kalal P, Jajoo A. Light intensity affects tolerance of pyrene in Chlorella vulgaris and Scenedesmus acutus. PHOTOSYNTHETICA 2022; 61:168-176. [PMID: 39650671 PMCID: PMC11515813 DOI: 10.32615/ps.2022.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2024]
Abstract
The impact of light intensity on the toxicity of pyrene, a 4-ring polycyclic aromatic hydrocarbon (PAH), was studied in Chlorella vulgaris and Scenedesmus acutus. Both species were cultured under low light, LL [50-60 μmol(photon) m-2 s-1], and high light, HL [100-110 μmol(photon) m-2 s-1] conditions to study the effects of pyrene (PYR) toxicity on growth parameters, the content of biomolecules, chlorophyll content, and photosynthetic efficiency. In the presence of PYR, S. acutus could grow well in LL and HL intensity. On the other hand, C. vulgaris showed a drastic decrease in growth and photosynthesis during HL conditions due to PYR toxicity. Regulation of nonphotochemical and photochemical quenching was responsible for the survival of S. acutus under PYR toxicity in LL and HL conditions. Thus, S. acutus seems to be a more promising candidate for pyrene degradation under varying light conditions.
Collapse
Affiliation(s)
- R.S. Tomar
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - R. Atre
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - D. Sharma
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - P. Rai-Kalal
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - A. Jajoo
- School of Life Science, Devi Ahilya University, 452017 Indore, India
- School of Biotechnology, Devi Ahilya University, 452017 Indore, India
| |
Collapse
|
4
|
Ravi Kiran B, Venkata Mohan S. Photosynthetic transients in Chlorella sorokiniana during phycoremediation of dairy wastewater under distinct light intensities. BIORESOURCE TECHNOLOGY 2021; 340:125593. [PMID: 34311176 DOI: 10.1016/j.biortech.2021.125593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The present study is aimed to understand the photosynthetic transients of Chlorella sorokiniana SVMBIOEN2 during treatment of dairy wastewater under different light intensities (100, 150, and 200 µmol m-2s-1) in mixotrophic mode. Light intensities showed marked influence on photosystem behavior, lipid profile, and organic pollutant removal. Analysis of Chlorophyll a fluorescence transient including Fv/Fm, ETo/RC, TRo/RC, and Abs/RC showed better photosystem efficiency at 100 µmol m-2s-1 operations. OJIP curve fitting depicted a positive L-band at 150 µmol m-2s-1 indicating lower kinetic energy of photosystem II (PSII) reaction centres at high light intensities. Better photosynthetic activity at 100 µmol m-2s-1 operations resulted in good assimilation of biomass (2.3 g L-1), carbohydrates (10.2 mg g-1), and proteins (14 mg g-1) with a significant reduction in chemical oxygen demand (85%). Phycoremediation of dairy wastewater accumulates predominantly monounsaturated fatty acids followed by polyunsaturated fatty acids showing the application of C. sorokiniana in nutraceutical and food industries.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
5
|
Déniel M, Errien N, Lagarde F, Zanella M, Caruso A. Interactions between polystyrene nanoparticles and Chlamydomonas reinhardtii monitored by infrared spectroscopy combined with molecular biology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115227. [PMID: 32721774 DOI: 10.1016/j.envpol.2020.115227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
For several decades, use of nanoparticles (NP) on a global scale has been generating new potential sources of organism disruption. Recent studies have shown that NP can cause modifications on the biochemical macromolecular composition of microalgae and raised questions on the toxicity of plastic particles, which are widespread in the aquatic environment. Polystyrene (PS) particles are among the most widely used plastics in the world. In our experimentation, a combined approach of infrared spectroscopy and molecular biology (real-time PCR) has been applied in order to better apprehend the consequences of interactions between Chlamydomonas reinhardtii, freshwater microalgae and PS NP. Two references have been used, nitrogen deprivation -a well-documented stressor-, and gold nanoparticles (Au-NP). As regards biochemical composition, our experiments show a differing microalga response, according to the NP to which they have been exposed. Results with infrared spectroscopy and gene expression methods are consistent and illustrate variation among several carbohydrates (galactose…). Furthermore, PS-NP seem to react in the same direction as nitrogen limitation, thereby supporting the hypothesis that PS-NP can induce response mechanisms to environmental changes in microalgae. This study highlighted the interest of combining infrared spectroscopy and gene expression as means of monitoring microalgae response to nanoplastics.
Collapse
Affiliation(s)
- Maureen Déniel
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Nicolas Errien
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Marie Zanella
- Laboratoire Mer, Molécules, Santé, EA 2160, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Aurore Caruso
- Laboratoire Mer, Molécules, Santé, EA 2160, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| |
Collapse
|
6
|
Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae. Anal Bioanal Chem 2020; 412:4413-4422. [DOI: 10.1007/s00216-020-02683-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
|
7
|
Yang F, Liu Q, Cheng Y, Feng L, Wu X, Fan Y, Raza MA, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC PLANT BIOLOGY 2020; 20:148. [PMID: 32268881 PMCID: PMC7140557 DOI: 10.1186/s12870-020-02352-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/23/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N + Fr, Low (L) + Fr, and L light. RESULTS Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N + Fr and L + Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. CONCLUSIONS Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.
Collapse
Affiliation(s)
- Feng Yang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Qinlin Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
| | - Yajiao Cheng
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Yuanfang Fan
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Kai Shu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
8
|
Telussa I, Rusnadi, Zeily Nurachman. Dynamics of β-carotene and fucoxanthin of tropical marine Navicula sp. as a response to light stress conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Nama S, Madireddi SK, Yadav RM, Subramanyam R. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. PHOTOSYNTHESIS RESEARCH 2019; 139:387-400. [PMID: 29982908 DOI: 10.1007/s11120-018-0551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/30/2018] [Indexed: 05/19/2023]
Abstract
Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m-2 s-1 with faster growth and more biomass production when compared to cells at 50 µmol m-2 s-1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein-pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII-LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.
Collapse
Affiliation(s)
- Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
10
|
Parrine D, Wu BS, Muhammad B, Rivera K, Pappin D, Zhao X, Lefsrud M. Proteome modifications on tomato under extreme high light induced-stress. Proteome Sci 2018; 16:20. [PMID: 30534005 PMCID: PMC6260845 DOI: 10.1186/s12953-018-0148-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Abiotic stress reduces photosynthetic yield and plant growth, negatively impacting global crop production and is a major constraint faced by agriculture. However, the knowledge on the impact on plants under extremely high irradiance is limited. We present the first in-depth proteomics analysis of plants treated with a method developed by our research group to generate a light gradient using an extremely intense light. METHODS The method consists of utilizing light emitting diodes (LED) to create a single spot at 24,000 μmol m- 2 s- 1 irradiance, generating three light stress levels. A light map and temperature profile were obtained during the light experiment. The proteins expressed in the treated tomato (Solanum lycopersicum, Heinz H1706) leaves were harvested 10 days after the treatment, allowing for the detection of proteins involved in a long-term recovery. A multiplex labeled proteomics method (iTRAQ) was analyzed by LC-MS/MS. RESULTS A total of 3994 proteins were identified at 1% false discovery rate and matched additional quality filters. Hierarchical clustering analysis resulted in four types of patterns related to the protein expression, with one being directly linked to the increased LED irradiation. A total of 37 proteins were found unique to the least damaged leaf zone, while the medium damaged zone had 372 proteins, and the severely damaged presented unique 1003 proteins. Oxygen evolving complex and PSII complex proteins (PsbH, PsbS, PsbR and Psb28) were found to be abundant in the most damaged leaf zone. This leaf zone presented a protein involved in the salicylic acid response, while it was not abundant in the other leaf zones. The mRNA level of PsbR was significantly lower (1-fold) compared the control in the most damaged zone of the leaf, while Psb28 and PsbH were lower (1-fold) in the less damaged leaf zones. PsbS mRNA abundance in all leaf zones tested presented no statistically significant change from the control. CONCLUSIONS We present the first characterization of the proteome changes caused by an extreme level of high-light intensity (24,000 μmol m- 2 s- 1). The proteomics results show the presence of specific defense responses to each level of light intensity, with a possible involvement of proteins PsbH, Psb28, PsbR, and PsbS.
Collapse
Affiliation(s)
- Débora Parrine
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21,111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, Quebec H9X 3V9 Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21,111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, Quebec H9X 3V9 Canada
| | - Bilal Muhammad
- Department of Animal Science, Macdonald Campus, McGill University, 21,111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Xin Zhao
- Department of Animal Science, Macdonald Campus, McGill University, 21,111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21,111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, Quebec H9X 3V9 Canada
| |
Collapse
|
11
|
Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:619-624. [DOI: 10.1016/j.jphotobiol.2016.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022]
|